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   6   Managing future risks and building socio-ecological resilience

 6.1   Introduction

Executive summary

The Mediterranean Basin is experiencing major 
changes in environmental conditions, which can 
introduce new challenges to the resilience of its 
natural and human systems. This situation is com-
bined with rapid and spatially diverse socio-eco-
nomic development in the region, mainly in terms 
of demographic trends and settlement patterns, 
thus leading to higher exposure to environmental 
hazards. Furthermore, new risks are expected to 
emerge from interactions between drivers and im-
pacts across sectors, thus increasing the vulnera-
bility of natural systems and human populations.

Future risks in the Mediterranean region will be 
determined by hazard characteristics (intensity 
and frequency) and by developments in socio-eco-
nomic conditions that determine a society’s adap-
tive capacity to cope with these hazards. Current 
risks to human population, economies and ecosys-
tems will increase as a result of changes in the 
patterns of droughts, wildfires, soil degradation, 
desertification, sea level rise, heat waves and river 
flooding, and other pressures, potentially leading 
to greater impacts. These impacts can be further 
exacerbated by the occurrence of compound and 
cumulative events, which can seriously challenge 
the adaptive capacity and resilience of biophysical 
and human subsystems. Coping with these risks, 
adapting to change and increasing the resilience 
of Mediterranean systems will be essential for en-
suring sustainable development in the region.

Successful practices and initiatives for risk reduc-
tion and management, such as water-sensitive 
urban design, implementation of nature-based 
solutions, operational flood forecasting systems, 
or collaborations within cities’ networks, are al-
ready being implemented across the region. How-
ever, these efforts are often slow in catching on or 
fail to consider the rising pressures in the light of 

changing environmental conditions and develop-
mental demands. Understanding these changes 
and demands is essential for managing future 
risks. In this context, Mediterranean-wide initia-
tives such as establishing long-term monitoring 
schemes to obtain data missing in many parts of 
the basin; accounting for differences in monitoring 
and reporting between northern (EU), eastern, and 
southern countries of the region; advancing (cli-
mate) modeling techniques for the short-term pre-
diction of extreme events (e.g., heat, flooding), and 
improvements in seasonal forecasts are essential 
for supporting future management and adaptation 
strategies and for enhancing resilience. Further-
more, public participation in the development and 
implementation of these strategies is necessary in 
order to increase local relevance and acceptance 
of proposed strategies, and is particularly impor-
tant for building a resilient society. 

The level of future risk in the Mediterranean Basin 
will largely depend on the timing of adaptation and 
on how soon and how effectively sustainable devel-
opment is pursued. In particular, addressing more 
pressing natural and socio-economic challenges 
in several countries in the Middle East and North 
Africa is essential for avoiding the widening of the 
development gap between northern, southern, and 
eastern countries of the region. Therefore, develop-
ing joint, region-wide, and integrated management 
and adaptation approaches that treat multiple haz-
ards in a holistic manner is of utmost importance 
for sustainable development in the entire region. 
Nonetheless, no one-size-fits-all strategy exists, 
but each measure needs to be tailored to the re-
spective local conditions. Regional co-operations, 
e.g. in the form of active participation in region-
al-to-global initiatives and networks concerned 
with building socio-ecological resilience, will be an 
important step forward in transferring knowledge 
on successful practices and innovation across the 
Mediterranean nations.

Scenarios of environmental and socio-economic 
change for this century suggest severe challeng-
es to the resilience of natural and human systems 
worldwide. For climate, such challenges will be 
particularly posed by extreme events, such as 
increased temperature anomalies (Section 2.2.4) 

and potential changes in storm intensity (Section 
2.2.2.3), as well as by slow onset events such as sea 
level rise (Section 2.2.8). From a management and 
policy perspective, this means that these changes 
increase the vulnerability of certain groups that 
are natural resource-dependent and increase the 
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need to enhance the resilience of ecosystems and 
human systems. Finally, they will also increase the 
need for efforts to reduce local stressors and iden-
tify adaptation options. 

The Mediterranean Basin is experiencing major 
changes in environmental conditions, combined 
with rapid and spatially diverse socio-economic 
development. These factors combined are exert-
ing increased pressure on natural systems and 
human societies in the region. At the same time, 
new risks may emerge from interactions between 
drivers (Section 2.6) and from the interactions of 
impacts across sectors (Cramer et al. 2018), which 
may result in greater impacts, while increasing the 
vulnerability of less resilient natural systems and 
populations. These risks can affect the provision of 
services from natural systems and lead to severe 
disruptions in social systems.

Chapter 6 deals with managing future risks, iden-
tifying adaptation options and building capacity for 
resilience to climate and environmental changes. 
Addressing this aim, the chapter discusses three 
key components of emerging policy needs in the 
basin. The first component is the current under-
standing on the trajectory, intensity and spatial 
extent of future risk for the principal hazards, and 

associated policy considerations of the region. 
Secondly, the chapter outlines the current man-
agement and adaptation approaches and preva-
lent governance frameworks for coping with these 
risks. The third component critically reviews a 
range of examples of adaptation and mitigation for 
sectoral approaches, while considering case stud-
ies from Mediterranean-type environments.

Chapter 6 identifies a number of innovative and 
successful practices for achieving sound and sus-
tainable development in countries of the Mediter-
ranean Basin. Successful adaptation case studies 
involve stakeholder participation, structural politi-
cal and economic change, gender considerations 
and weather-indexed insurance schemes. Suc-
cessful mitigation involves options with clear soci-
etal benefits, such as energy cooperatives, energy 
efficiency, or regional cooperation. The final part 
of this section discusses potential interactions 
between hazards and sectors, which may lead to 
increased impacts. It further includes proposals to 
improve synergies between adaptation and mitiga-
tion practices and suggestions to promote Medi-
terranean cooperation and networking for building 
resilience, while also focusing on education and 
capacity-building.

6.2.1 Future health risks

Environmental change can lead to a wide range 
of impacts on human health in Mediterranean 
countries (Sections 5.2.3 and 5.2.4). The most well-
known impacts are direct impacts, e.g., extreme 
temperatures, cold and heat waves leading to car-
diovascular and respiratory diseases and death 
(Gasparrini et al. 2017), wildfires leading to lethal 
injuries and respiratory diseases (Reid et al. 2016), 
and direct physical injuries and deaths resulting 
from extreme weather events, such as intense rain-
fall, river flooding, and storms (Forzieri et al. 2017). 
Impacts on human health can also be indirect, e.g., 
climate-related changes in food availability and 
quality that threaten food security (Deryng et al. 
2016), increased variability of rainfall patterns that 
jeopardizes the availability and quality of freshwater 
(Koutroulis et al. 2016; Flörke et al. 2018), worsened 
air quality causing respiratory illnesses (de Sario et 
al. 2013; Doherty et al. 2017), and climate-driven 
increase in vector-borne diseases (Negev et al. 
2015). The extent to which environmental change 

affects human health largely depends on the vul-
nerability of the exposed populations, that is, their 
ability to face and cope with climate-related haz-
ards (IPCC 2012). Just as, for example, climate 
change is altering the climate system, socio-eco-
nomic development and demographic growth are 
shaping the future vulnerability of populations in 
the Mediterranean Basin, with contrasting trends 
depending on the type of socio-economic trajectory 
(O’Neill et al. 2017; Reimann et al. 2018a; Kok et al. 
2019). Urban areas along the Mediterranean coast 
are especially affected by climate change impacts 
on health because these areas concentrate people 
and assets (Watts et al. 2015). Urban areas often 
intensify climate-related hazards, e.g., hotter tem-
peratures during heat waves due to the urban heat 
island effect (Papalexiou et al. 2018) and increase 
in run-off and flooding during extreme precipitation 
events due to soil sealing (Romero Diaz et al. 2017).

Heat-related morbidity and mortality are projected 
to increase substantially throughout the Mediterra-
nean countries, under all climate scenarios (Sec-

 6.2   Human health impacts
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tion 5.2.5.2). Impacts are expected to be the greatest 
in urban areas where people are concentrated and 
where the urban heat islands lead to higher in-
ner-city temperatures (Yang et al. 2016). Future 
heat-related health risks are well-documented, 
with a large number of case studies spread across 
the Mediterranean Basin. Examples include (but 
are not limited to) a ~3- to 9-fold increase in the 
heat-related mortality rate in Cyprus (Heaviside et 
al. 2016); a 50-fold increase in mortality (compared 
to the current situation) on average across south-
ern Europe by the end of the century (Forzieri et al. 
2017) and a substantial difference in the increase 
of mortality between RCP2.6/RCP4.5 and RCP8.5 
scenarios (Gasparrini et al. 2017; Kendrovski et 
al. 2017) (Section 5.2.5.2). In contrast, cold-related 
mortality is projected to decrease under all sce-
narios (Forzieri et al. 2017) (Section 5.2.5.3). It is 
also worth noting that changes in socio-economic 
and demographic conditions such as urbanization, 
demographic growth, and aging are also expect-
ed to further increase the burden of heat-related 
morbidity and mortality in Mediterranean countries 
(Rohat et al. 2019b, 2019a).

In contrast to other parts of the world, climate 
change is expected to lead to an overall increase 
in ground-level ozone- and fine particulate mat-
ter-related mortality in Mediterranean countries 
(Silva et al. 2016), with the exception of high-end 
climate change scenario RCP8.5, which leads to 
an increase in the health burden of air pollution in 
most Mediterranean countries (Silva et al. 2017). 
However, the significant uncertainties that exist in 
the trend directions and in risk estimates, that are 
primarily linked to the uncertainty in future types of 
emissions must be noted (Doherty et al. 2017).

Temperature rise will expand the habitat suitabil-
ity for vectors, such as mosquitoes and sandflies 
(Negev et al. 2015; Semenza and Suk 2018; Hertig 
2019) to most of the Mediterranean Basin by the 
end of the century and increase the transmission 
risk of the diseases they can carry, such as den-
gue, West Nile Fever and leishmaniasis (Bouzid et 
al. 2014; Semenza et al. 2016; Liu-Helmersson et 
al. 2019) (Section 5.2.5.4). One exception is the re-
duction of habitat suitability for Aedes albopictus in 
the southernmost parts of Europe (Caminade et al. 
2012; Proestos et al. 2015), leading to a reduction of 
climatically suitable areas for the transmission of 
Chikungunya (Fischer et al. 2013). Changes to the 
hydrological cycle caused by climate changes are 
expected to further amplify such health issues and 
lead to increased fatalities. Erratic precipitation 
and extreme events and floods could support the 
flourishing of bacteria, parasites and algal blooms, 

including the protozoan parasites Cryptosporidium, 
hepatitis A viruses, Escherichia coli bacteria, and 
more than 100 other pathogens. The increase in 
human mobility also plays a crucial role in spread-
ing vector-borne diseases throughout the Mediter-
ranean Basin in newly suitable habitats (Thomas et 
al. 2014; Roche et al. 2015; Hertig 2019; Kraemer 
et al. 2019).

The combination of longer fire seasons and more 
frequent, large, and severe fires – triggered by in-
creased droughts and land-use change (Turco et 
al. 2014; Knorr et al. 2016) – is projected to lead 
to greater fire risk and casualties, particularly 
in sub-urban areas (Forzieri et al. 2017) (Section 
2.6.3.3). Similarly, more intense and frequent ex-
treme precipitation events are expected to trigger 
a strong increase in flash flood-related injuries 
and mortalities throughout Mediterranean coun-
tries (Gaume et al. 2016) (Section 3.1.4.1). Floods 
can further damage water infrastructure, contam-
inate freshwater supplies, heighten the risk of wa-
ter-borne diseases, and create breeding grounds 
for disease-carrying insects, especially threaten-
ing those with already limited access to water and 
sanitation (WHO 2017). The combination of demo-
graphic growth and changing diets is expected to 
lead to higher food demand across the region (Pa-
ciello 2015), while changes in extreme events such 
as droughts, heat waves, and extreme precipitation 
are projected to decrease crop and livestock yields 
substantially (Bernués et al. 2011; Deryng et al. 
2016) (Section 3.2.2.1). This is particularly the case 
in the southern part of the Mediterranean Basin.

6.2.2 Management approaches, governance, 
and adaptation for health risks

National adaptation policies have been adopted in 
a large number of Mediterranean countries, often 
covering and acting on large-scale health top-
ics such as extreme heat, air pollution, and vec-
tor-borne diseases (Negev et al. 2015). Although 
national governments have an important role to 
play in reducing the burden of climate change on 
human health, it is at the local scale that most ac-
tions and measures are taken (Paz et al. 2016). In 
fact, cities and municipalities in the Mediterranean 
Basin are at the forefront of climate change adap-
tation, particularly with regard to climate change 
impacts on human health, and often drive the re-
gional effort to better anticipate and prepare for 
the adverse effects of climate change on human 
health and well-being (Reckien et al. 2018).

City-level adaptation is, more often than not, pre-
ferred to national-scale adaptation to decrease the 
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vulnerability of the local population. This is accom-
plished through measures that include (but are not 
limited to) the improvement of housing and infra-
structure, the education and awareness-raising of 
the most vulnerable communities, the implemen-
tation of early warning systems, the strengthening 
of local emergency and healthcare services, and 
the general strengthening of the community’s and 
local institutions’ adaptive capacity (Larsen 2015; 
Liotta et al. 2018). City-level adaptation can also di-
rectly target the reduction of climate-related haz-
ards, such as building multi-usage buffer zones to 
reduce flood risk and to decrease the urban heat 
island (Yang et al. 2016).

Interestingly, management approaches sometimes 
attempt to develop adaptation measures that also 
affect climate change mitigation and/or that trig-
ger health benefits, such as using green roofs to 
retrofit existing buildings (Gagliano et al. 2016) 
and transforming the transportation systems to 
mitigate emissions and reduce air pollution (WHO 
Europe 2017).

6.2.3 Case studies

It is important to note that most adaptation actions 
are impact-, context- and place-specific and there 
is no one-size-fits-all adaptation measure to re-
duce climate impacts on human health. Adaptation 
measures can take a wide range of forms, be trig-
gered by different events, operate on different spa-
tial and temporal scales, and be associated with 
different implementation constraints (Fernandez 
Milan and Creutzig 2015; Holman et al. 2018).

A number of Mediterranean cities have devel-
oped adaptation plans that specifically target the 
reduction of human health impacts. A significant 
part of the actions depicted in such climate adap-
tation plans are broad and unspecific (Reckien et 
al. 2018), which can constitute a bad practice and 
often do not mention potential negative effects, 
such as the increase in inner-city temperature 
and air pollution due to the systematic installation 
of air conditioning (Salamanca et al. 2014). Cer-
tain adaptation plans depict context-specific and 
quantified actions, such as in the city of Barcelo-
na, which for instance, plans to increase its urban 
green areas by 1 m2 per city resident by 2030 in 
order to decrease the urban heat island in case of 
extreme heat and increase water infiltration in the 
event of flash flooding (Barcelona Sostenible 2015).

For regional climate-related hazards, such as 
vector-borne diseases, a multi-country and trans- 
boundary approach to adaptation is crucial (Negev 
et al. 2015) and has been implemented over the 
past decades. In its current form, the MediLabSe-
cure project40 covers all Mediterranean countries 
and aims at preventing vector-borne diseases in 
these countries through scientific research and 
concrete actions.

6.2.4 Innovation

Climate change vulnerability assessments with a 
strong focus on human health have been under-
taken over the past few years for cities without 
dedicated adaptation plans, including case studies 
for Cairo (Katzan and Owsianowski 2017), Nicosia 
(Kaimaki et al. 2014), and Antalya (Antalya Metro-
politan Municipality 2018). These studies provide 
a strong scientific basis for the design of con-
text-specific adaptation plans in the years to come.
Collaboration within networks of cities with the 
goal to act on climate change (including adaptation 
to human health impacts) is promising in terms  
of identifying and sharing knowledge on best prac-
tices and concrete actions (Román and Midttun 
2010; Rosenzweig et al. 2018). For example, cities 
such as Tel Aviv, Rome, Thessaloniki, Ramallah 
and Byblos are members of the "100 Resilient 
Cities"41 network, Venice is a member of the "C40  
Cities"42 network and its program for connecting 
delta cities, and numerous cities are members 
of the Global Covenant of Mayors for Climate and 
Energy.

The integration of climate adaptation and mitiga-
tion plans within a unique climate plan is rarely 
achieved, but appears to be an efficient way to 
design measures that benefit both adaptation and 
mitigation (Reckien et al. 2018). The city of Athens 
has recently entered the circle of cities to have 
done so, with results on the reduction of human 
health impacts expected to come in the next few 
years (City of Athens 2017).

40 https://www.medilabsecure.com/home.html

41 https://www.rockefellerfoundation.org/100-resilient-cities/

42 https://www.c40.org/
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The Sustainable Water Partnership (SWP)43 de-
fines water security as “the adaptive capacity to 
safeguard the sustainable availability of, access 
to, and safe use of an adequate, reliable and resil-
ient quantity and quality of water for health, live-
lihoods, ecosystems and productive economies”. 
This embracing definition reveals the pivotal role 
water security plays on all levels for reaching the 
ambitious goals laid out by the UN’s Sustainable 
Development Goals (UN 2015; Bhaduri et al. 2016). 
Diametric to water security is water scarcity, a 
state reached when water demand can no longer 
be satisfied due to a lack of freshwater resources 
(Srinivasan et al. 2012). Physical water scarcity re-
sults in the depletion of water resources for both 
humans and natural systems and causes impor-
tant transitions in the exploitation of different water 
compartments, e.g., from surface to groundwater 
sources, or even water transfers between basins. 
When excessive human consumption of water re-
sources occurs under these circumstances, it may 
cause significant pressures on aquifers and sur-
face waters, producing adverse effects on water 
quantity (over-exploitation) and quality (nutrient 
excess, pollution and lower biodiversity), which is 
detrimental to economic development and even 
compromises human health.

6.3.1 Future risks for water security

The Mediterranean Basin is particularly prone to 
limited water security due to its semi-arid to arid 
climates, especially as most important economies, 
such as tourism development (Section 3.1.2.3) and 
intensive agriculture (Section 3.1.2.2) are heavily 
water dependent and critically vulnerable to water 
scarcity and stress (Barceló and Sabater 2010). 
Thus, water security is at severe risk in the Med-
iterranean Basin. This susceptibility to scarcity 
is caused by strong human pressures, under the 
form of overexploitation, for agricultural, urban 
and industrial water uses, together with reduced 
availability of water due to climate change. Many 
Mediterranean water bodies, aquifer systems in 
particular (Section 3.1.3.4), show over-exploitation 
associated with high seasonal water demand, and 
suffer from salinization, particularly in coastal 
areas and regions of intense irrigation and soil 
degradation. High human water demands in the 
region concentrate when water availability is at 
the lowest and exhausted aquifers co-occur with 
transformation of watercourses from permanent 

into intermittent. An increasingly common scenar-
io in river basins includes headwaters becoming 
intermittent or even ephemeral, while lowlands 
bear aquifers that are depleted or contaminated by 
either salt or pollutants (Choukr-Allah et al. 2017). 
Growing human demands for water are leading to 
rapid increases in the frequency and severity of 
water scarcity, where there is insufficient water to 
simultaneously support both human and ecosys-
tem water needs (Bond et al. 2019). With climate 
change and increasing demand for food and com-
mercial services due to a growing population with 
higher demands, such patterns will very likely in-
crease dramatically (Iglesias et al. 2012).

6.3.2 Management approaches, 
governance, and adaptation for water 
security
Observed trends and projections for the future in-
dicate a strong susceptibility to changes in hydro-
logical regimes, an increasing general shortage of 
water resources and consequent threats to water 
availability and management (Section 3.1.1.1). 
However, it must be clearly stated that current un-
certainties in climate projections and subsequent 
impact models, a yet incomplete understanding of 
the impact of a climate change signal on economic 
mechanisms or the lack of an elaborate and in-
tegrated human security conceptual framework, 
are imposing strong limitations on water-related 
decision-making under climate change conditions 
(Section 3.1.5).

Climate, demographic and economic changes 
are expected to have strong impacts on the man-
agement of water resources, as well as on key 
strategic sectors of regional economies and their 
macroeconomic implications (Section 3.1.5). Such 
developments bare the capacity to exacerbate 
tensions, and even intra- and inter-state conflicts 
among social, political, ecological and economic 
actors. Meanwhile, it is widely agreed that effective 
adaptation and prevention measures need mul-
ti-disciplinary preparation, analysis, action and 
promotion of collaborative strategies.

The complexity of the water cycle contrasts strong-
ly with the low data availability, which (a) limits 
the number of analysis techniques and methods 
available to researchers, (b) limits the accuracy 
of models and predictions, and (c) consequently 

43 https://www.swpwater.org/
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challenges the capabilities to develop appropriate 
management measures to mitigate or adapt the 
environment to scarcity and drought conditions. 
The current potential to develop appropriate re-
gional adaptation measures to climate change 
impacts suffers heavily from large uncertainties. 
These spread along a long chain of components, 
starting from the definition of emission scenarios 
to global and regional climate modeling to impact 
models and a subsequent variety of management 
options. Furthermore, the lack of awareness 
or understanding of the complex climate-re-
source-society dynamics often leads to inappro-
priate measures or no measures at all. Integrated 
water resources management is a holistic ap-
proach that focuses on both environmental as well 
as on socio-economic factors influencing water 
availability and supply, and seeks an efficient 
blend of all available conventional and unconven-
tional water resources to meet the demands of the 
full range of water users, especially in agriculture, 
industry and tourism. However, the management 
approaches and solutions adopted, e.g., in form of 
decision support for specific water resources sys-
tems, are often highly specific for individual case 
studies (Section 3.1.5).

An inventory of international, national and regional 
policies dealing with responses to climate change, 
water resources management, responses to haz-
ards and disasters, and security in the region, is 
essential for proposing a suitable policy frame-
work to integrate security, climate change adap-
tation and water management issues and specific 
recommendations for policy streamlining at the 
UN, EU, national and regional levels.

Political, economic and social factors seem to be 
more important drivers of water-related conflicts 
than climate-related variables (Section 5.3.3.2). 
States and state-led adaptation play a prominent 
role in affecting human security: states can greatly 
facilitate adaptation, but policies are also prone 
to adverse effects. Adaptation can both increase 
and diminish water security for certain groups, 
although this depends to a great extent on fac-
tors such as power relations, marginalization and 
governance. There are also varying capacities of 
states to implement effective adaptation policies. 
Analyzing the political economy in an area or 
country helps to understand state-led adaptation. 
Impacts on key strategic sectors typically consid-
er agriculture and tourism. These sectors show 
specific dependence on water security, which is of 
quintessential importance in the Mediterranean 
economy, with relatively high adaptation potential 
to strategic policies.

Most Mediterranean countries will likely face 
water shortages (Section 3.1.1.1). This can have 
significant implications in terms of agricultural 
productivity, income and welfare. However, the 
water gap in the Mediterranean area will be affect-
ed by different external drivers. In northern Medi-
terranean countries, this will be due to increased 
temperature and decreased precipitation. Middle 
East and North Africa economies will likely find 
it difficult to put aside precious water resources 
for the purpose of environmental preservation. In 
southern Mediterranean countries, the growing 
non-agricultural water needs (induced by strong 
economic and demographic development) will be 
an additional challenge to water security, demand-
ing management improvements in water efficien-
cy. Innovations include highly successful efforts to 
increase water use efficiency. Smart metering, for 
example, is being deployed to improve accuracy in 
billing, evaluate consumption and increase users’ 
awareness of their own consumption (Revolve 
Water 2017).

6.3.3 Case studies

Due to the already high and expected increasing 
pressure on water resources in the Mediterranean, 
the efforts to counteract water scarcity and estab-
lish water security are manifold in scope, action 
and scale. As the challenges can be very site-spe-
cific, and triggered by both natural and anthropo-
genic drivers in various constellations, significant 
uncertainties remain in identifying suitable pro-
grams of measures, which would be generally ap-
plicable for being independent of region and scale. 
Thus, related activities can be embedded anywhere 
from pan-continental to national levels, but often 
basin-scale and even highly localized programs 
and case studies are implemented. The range of 
measures (Section 3.1.5) includes water-saving 
technologies, such as new equipment in irrigation 
agriculture and households, often complemented 
by improved water efficiency (e.g., by means of 
adapted water management procedures), as well 
as direct measures to increase water availability 
through additional multi-scale storage solutions 
(ranging from cisterns to large reservoirs) or 
through the use of unconventional water sources 
stemming from recharging wastewater or seawa-
ter desalination. The latter may however, cause 
environmental concerns due to soil contamination 
or energy consumption (IWA 2012).

All these aspects can be useful components of an 
integrated water resources management approach 
(Choukr-Allah et al. 2012) (Section 3.1.5.1). To date, 
there are several highly successful examples of 
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such an approach, but negative case studies also 
exist. This highlights the prevailing need for fur-
ther research and transdisciplinary collaboration 
to reach and maintain water security in the Med-
iterranean (Ludwig et al. 2011; Ludwig and Roson 
2016; Saladini et al. 2018).

Several success stories of water security meas-
ures related to wastewater re-use experiments on 
local scale applications exist. The case of Oueljet 
El Khoder, Tunisia, is an exemplary effort, which 
succeeded in establishing a sound system for 
water re-use to provide reliable water resources 
for irrigation and ensuring sustainable conditions 
for the underlying aquifer. In this case, the col-
laborative project SWIM Sustain Water MED44 has 
introduced a tertiary treatment unit including a 
slow sand filter alongside a monitoring and early 
warning system for monitoring the quality of the 
treated wastewater. The installations resulted in 
an increased rate of re-use of reclaimed water and 
an extension of the agricultural irrigation area.

A main challenge, however, is the fact that despite 
the evidence of water scarcity being felt by stake-
holders and end-users, the role of climate change 
and the related future exacerbation of water stress 
is often ignored and not perceived as a key issue for 
water uses and water security (La Jeunesse et al. 
2015), In the course of the CLIMB project45, several 
circum-Mediterranean case studies (e.g., France, 
Italy, Turkey, Egypt and Tunisia) showed that the 
main response to increasing water demand in the 
Mediterranean region is a progressive externaliza-
tion of water resources, with limits imposed by na-
tional borders and technological possibilities. This 
thinking, which does not consider climate change 
as a driving force, is not sustainable and prone to 
rising water conflicts.

6.3.4 Innovation

In recent years, great energy and investment has 
been placed in the modernization of installations 
and development of (sometimes integrated) water 
resources management (Section 3.1.5) (Cameira 
and Santos Pereira 2019). However, in many cases, 
these efforts seek to adapt to current state chal-
lenges and fail to consider the rising pressures in 
the light of climate change and growing domestic 
and industrial water demand. One of the expected 
consequences of climate change alone is a re-
duction in annual precipitation, paired with a very 
likely increase in rainfall variability and extremes 

(Section 2.2.5). All of these factors contribute to in-
creasing vulnerability and risk in potentially affect-
ed regions and can consequently jeopardize water 
security. Innovation is needed to reach beyond the 
current limitations of water resources manage-
ment by introducing flexible mechanisms that not 
only include novel water (saving) technologies, but 
also build on targeted water system analysis and 
research (Section 3.1.5.2). Important elements of 
these types of systems start with the (re-)estab-
lishment of environmental monitoring networks, 
composed of a dense in-situ observational network 
paired with operational remote sensing applica-
tions (e.g., for spatial drought monitoring, includ-
ing vegetation status, soil moisture, water levels). 
Based on such regular time series of data prod-
ucts, spatially-explicit and process-based models 
can be built with sufficient predictive power to 
support long-term planning and decision-making 
to adapt to the impacts of a gradual climate and 
global change.

Great innovation potential lies in the develop-
ment of regionally specified and flexible response 
schemes to water scarcity that reach beyond the 
state-of-art and provide integrated solutions for 
increased water efficiency by combining improved 
water-saving technologies (Wang and Polcher 
2019) with the provision of unconventional water 
resources (e.g., by managed aquifer recharge or 
saline water for irrigation (Reca et al. 2018; Tzoraki 
et al. 2018)), to avoid water stress (Section 3.1.5.2). 
It is further necessary to establish systems for 
short-term predictions of extreme events and sea-
sonal forecasts that allow for extended reaction 
time of first responders (Haro-Monteagudo et al. 
2017; Corral et al. 2019) and affected industries, 
such as agriculture (Martínez-Fernández et al. 
2013; Kourgialas et al. 2019) or tourism (Hadjik-
akou et al. 2013; Toth et al. 2018). Water-sensitive 
urban design (WSUD) is approach to management 
that is starting to take hold in cities, although slow 
to catch on in the Mediterranean (Goulden et al. 
2018). This paradigm is fueled by the interest in 
sustainable urban development and it aims to in-
tegrate best water management practices (many 
related to stormwater runoff), with mechanisms 
of urban planning. WSUD, developed in Australia, 
connects urban planning with stormwater man-
agement mainly for protecting groundwater in 
aquifers. In the United States, planners employ a 
similar approach, called low-impact development 
(LID), which focuses on maintaining a steady hy-
drological response (i.e., stormwater runoff vol-

44 https://www.swim-h2020.eu/

45 https://cordis.europa.eu/project/id/244151
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ume and discharge rate leaving the spatial unit 
before and after development), but also seeks to 
view stormwater as a benefit to the environment, 
rather than only as a disturbance (Carlson et al. 
2015). While both LID and WSUD aim to minimize 
the hydrological effects of urban development on 
the surrounding environment, WSUD puts more 
emphasis on maintaining a water balance that 
considers waterway erosion along with the man-
agement of groundwater, stream flows, and flood 
damage. In Israel, this approach has been con-
sidered and implemented, but mostly on a local, 
site-specific basis, through such practices as 
retention pools, but it has been less successfully 

implemented to curb such problems as increased 
coastal erosion (Portman 2018).

In order to have practical impact, a crucial element 
in this endeavor is to fully take into consideration 
the political and institutional dimensions of dy-
namically changing priorities in water governance. 
This can be supported by novel ways of public par-
ticipation and knowledge sharing between institu-
tions and researchers (Bielsa and Cazcarro 2014), 
which in combination could and should lead to the 
development of smart water grids and efficient 
water licensing and metering.

6.4.1 Future drought risks in agriculture

Agricultural drought occurs when soil moisture 
availability to plants has dropped to such a level 
that it adversely affects crop and pasture growth 
(Mannochi et al. 2004). The Mediterranean region 
stands out as one meteorological drought hotspot 
where drought severity has increased in recent 
decades (Spinoni et al. 2019) (Section 2.2.5). Re-
garding agriculture, climate warming exacerbates 
the impact of meteorological droughts through the 
increasing evaporative demand (Quintana-Seguí et 
al. 2016). The analysis of climate model ensem-
bles in the Mediterranean consistently projects 
future meteorological droughts that translate into 
stronger soil moisture anomalies (Planton et al. 
2012; Orlowsky and Seneviratne 2013; Dubrovský 
et al. 2014; Ruosteenoja et al. 2018) (Section 
3.1.4.1). More recently, Rojas et al. (2019) showed 
that climate models project negative precipitation 
trends outside the natural variability in the Medi-
terranean region in the mid-century, in all RCPs. A 
10 to 30% decrease in precipitation is expected as 
early as 2040, in particular causing drier winters 
in northern Africa, and summer drying in southern 
Europe.

Already under “low” global warming levels of 1.5°C 
and 2°C, the exacerbation of drought conditions in 
the Mediterranean will be unprecedented since 
the last millennium (Guiot and Cramer 2016; Sa-
maniego et al. 2018) (Section 3.1.4.1). Furthermore, 
as Mediterranean drought events also imply hot 
summers (Zampieri et al. 2009; Hirschi et al. 2011; 
Russo et al. 2018), they drive a positive feedback 
that again enhances the frequency and the severity 
of agriculture droughts, directly challenging both 

crop and pasture management (e.g., Saadi et al. 
2015; Scocco et al. 2016). Both rain-fed agriculture 
and irrigated agriculture are vulnerable to drought 
(García-Garizábal et al. 2014), because the avail-
ability of irrigation water may become limited by 
several factors, including depletion of overexploit-
ed groundwater (Famiglietti 2014), competition for 
water due to the expansion of irrigated agriculture 
(Khadra and Sagardoy 2019) or conflict with other 
water usages (e.g., Gössling et al. 2012) (Section 
3.2.2.1).

6.4.2 Management approaches, 
governance, and adaptation for 
agricultural drought
Farmers, who have been historically exposed to 
variable climate conditions, such as in the Med-
iterranean region, tend to be more prepared to 
cope with climate change (Reidsma et al. 2009). 
When it comes to droughts, several options are 
considered for avoiding water-stress in crops/pas-
tures. Two main strategies can be identified: either 
ensuring that the water requirements are fulfilled 
(e.g., Fader et al. 2016), or requiring less water by 
modifying the agricultural system and its manage-
ment so that the crops/pastures can better endure 
drought (Section 3.2.3.1).

Adjusting irrigation water supply to satisfy 
water requirements

Rapid solutions for satisfying increasing water 
requirements, such as expanding irrigated areas 
or increasing groundwater and/or reservoir pump-
ing, only have short-term effects and are often not 
sustainable when they lead to decreased ground-
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water levels, as reported from many regions (see 
Richey 2014 for the groundwater depletion of the 
major aquifers of the MENA region) or when only 
limited surface reservoirs are available (Section 
3.1.2.2). This affects all competitive water users, 
including the environment, e.g., the wetlands in 
the Upper Guadiana Basin in Spain (Carmona et 
al. 2011). Other solutions include the deployment 
of improved irrigation and conveyance systems, 
which have a large water-saving potential (e.g., 
sprinkler or drip). In recent years, governments 
of a few Mediterranean countries have subsidized 
pressurized irrigation systems (Daccache et al. 
2014). According to the study by Fader et al. (2016), 
the Mediterranean region could save up to 35% of 
water by implementing such irrigation techniques 
(Section 3.1.5.2). Nevertheless, these techniques 
alone are insufficient to face the increasing water 
demand resulting from climate change, demogra-
phy, and socio-economic change (Malek and Ver-
burg 2018).

Increasing attention is being given to wastewater 
reclamation and re-use, with important projects 
developed in countries all over the Mediterranean 
Basin since the end of the 20th century (Angelakis 
et al. 1999). From different experiments, it appears 
that treated wastewater re-use in integrated water 
resources management systems may provide sig-
nificant benefits for irrigated agriculture and could 
be implemented in most water-scarce regions 
(Kalavrouziotis et al. 2015) (Section 3.1.5.2). Even 
the use of poorly controlled treated wastewater 
does not damage the agronomic quality of soils. It 
even increases the soil organic matter (Cherfouh 
et al. 2018). Consequently, it is possible to expect 
both potential agronomical benefits and improved 
water supply from wastewater management.

Desalination of seawater for irrigation has high 
costs and many negative environmental impacts 
(Sadhwani et al. 2005). Furthermore high-level de-
salination removes ions that are essential for plant 
growth (Yermiyahu et al. 2007). The above studies 
concluded that desalination facilities for irrigation 
need revised treatment standards. An alternative 
strategy looks at crop performance under deficit 
irrigation. Promising results indicate an enhance-
ment of water productivity, leading to propor-
tionally lower yield reduction than water deficit. 
Furthermore, in the case of tomatoes, fruit quality 
is improved (Patanè et al. 2011).

Reducing water stress

The development of intensive agriculture since the 
second half of the 20th century has changed soil 

properties in several ways, including change of 
structure, decrease in soil organic matter, and de-
crease in biological activity (e.g., García-Orenes et 
al. 2012; Aguilera et al. 2013; Morugán-Coronado et 
al. 2015). In addition, many arable soils with cereals 
are left bare for extended periods (Kosmas et al. 
1997), and bare soil beneath the rows is also a fre-
quent feature of industrial perennial crops (Gómez 
et al. 2011). Both aspects impact the soil hydrolog-
ical cycle, i.e., the water resources for crops/pas-
tures. First, besides increasing erosion (which has 
reached dramatic levels in some Mediterranean 
cropping areas), bare soils favor evaporation and 
intercept precipitation water less well than vege-
tated or mulched soil (Monteiro and Lopes 2007). 
Second, low organic matter content, tillage practic-
es, and the decline of biological activities all imply 
soil structure changes such as porosity (Pagliai et 
al. 2004) (Section 3.2.3.2). In particular, the micro-
pore to macropore ratio is modified: the proportion 
of micropores, which are considered the most im-
portant both in soil-water-plant relationships and 
in maintaining a good soil structure (Pagliai et al. 
1983), is decreased by tillage, with a significantly 
reduced capacity to store water (Lampurlanés et 
al. 2016). Since the end of the 20th century, these 
phenomena have been studied in the Mediterrane-
an Basin, using experiments on the effects of con-
servation agriculture (no tillage / reduced tillage, 
cover crops / mulching) on the soil-water dynamics 
for most of the Mediterranean cropping systems. 
These strategies are particularly promising in dry 
areas, and their average effect on Mediterranean 
agro-ecosystems, including yields, is beneficial, es-
pecially during water-stressed periods, despite the 
existence of contradictory results that may occur 
for many reasons (Mrabet 2002; Álvaro-Fuentes 
et al. 2007, 2008; Mrabet et al. 2012; Tomaz et al. 
2017) (Section 3.2.3).

These adaptation strategies also have benefits for 
climate mitigation, since conservation agriculture 
emits less greenhouse gases and generally leads 
to soil carbon sequestration (Kassam et al. 2012; 
Aguilera et al. 2013; García-Tejero et al. 2020)  
(Sections 3.2.3.2 and 3.2.3.3). The net effect of this is 
still debated and clearly depends on other factors 
as well (Govaerts et al. 2009). There is also a finite 
time horizon as the agro-ecosystem soil carbon 
maximum capacity is often reached after a 20-
50-year period (Lal and Bruce 1999). In any case, 
incentives from different institutions now exist in 
several countries in order to promote agricultural 
management strategies that rely on key principles 
of conservation agriculture (Calatrava et al. 2011). 
Water stress can also be reduced if several crops 
(or crops and flower/grass strips) are grown in 
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combination on the same land, which may result 
in a deeper penetration of the roots into the soil. 
Such plasticity has been observed in vineyards with 
cover cropping, where the compensatory growth of 
the grapevine root system allowed the resources 
(e.g., water) of deeper soil layers to be exploited 
(Celette et al. 2008). In an agroforestry system mix-
ing walnut trees and winter crops, the competition 
with the winter crops induces deeper rooting of 
the walnut trees (Cardinael et al. 2015). Besides 
revealing the adaptive capacity of plants, these 
agroforestry practices provide welcomed shade 
in summer in the Mediterranean Basin, which is 
beneficial for both crops and livestock (Sá-Sousa 
2014). Agroforestry systems are multifunctional, 
currently re-discovered in temperate areas – only 
for the montado-dehesa system of the Iberian 
Peninsula, a savanna-like rangeland dominated 
by scattered Mediterranean evergreen oak trees, 
the positive role of the trees on the water balance 
has been shown since the 20th century (Joffre and 
Rambal 1993, 2006).

6.4.3 Case studies

Many studies on no tillage in the Mediterranean 
show that this practice has positive effects on the 
soil for keeping more water, therefore enhancing 

yields, especially in water-stressed years. A few 
studies on the similar positive effects of agrofor-
estry are shown in Fig. 6.1.

6.4.4 Innovation

Mycorrhizal symbiosis

In the Mediterranean Basin, the alleviation of 
drought stress by mycorrhizal symbiosis has been 
studied for more than 25 years (Sánchez-Díaz and 
Honrubia 1994). Using soils of different Mediter-
ranean locations, controlled experiments regularly 
report the beneficial effect of arbuscular mycor-
rhizal symbiosis for crops in drought conditions: 
Meddich et al. (2000) for clover, Ruiz-Lozano et al. 
(2001) for soybean, Marulanda et al. (2007) for lav-
ender, Navarro García et al. (2011) for cane-apple 
bush, Armada et al. (2015) for maize (using also 
drought-adapted autochthonous microorganisms), 
and Calvo-Polanco et al. (2016) for olive among 
others. Field experiments confirm that mycorrhizal 
inoculation alleviates water deficit impact (e.g., in 
Hungary, Bakr et al. 2018), but we are not aware of 
such field studies in the Mediterranean.

Considerable progress has been made in under-
standing the role of arbuscular mycorrhizal sym-

Yield Water cycle Soil carbon

Figure 6.1 | Mediterranean sites where the impacts of innovative agricultural practices have been surveyed.   
These practices include “conservation agriculture”, i.e., no or reduced tillage, organic amendments, cover crop, and 
two agroforestry sites. Dark green dots: sites where the impact of these practices on soil carbon have been meas-
ured, blue dots: sites where impacts on soil hydrology have been measured, orange circles: sites where the impacts 
on yields have been measured or surveyed.
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biosis in reducing drought effects (Rapparini and 
Peñuelas 2014), but more studies are needed to 
elucidate the relevant mechanisms. Experiments 
are being carried out worldwide with different 
types of plants (Tyagi et al. 2017; Pavithra and Yapa 
2018; Zhang et al. 2019), with particular focus on 
the efficient cooperation between nodulation and 
arbuscular mycorrhizal fungi (AMF) for legumes 
(Foyer et al. 2018). Understanding the AMF-medi-
ated mechanisms that are important for regulating 
the establishment of mycorrhizal association and 
plant protective responses to unfavorable condi-
tions will open up to new approaches to exploit AMF 
as a bioprotective tool against drought (Bahadur et 
al. 2019). Antagonistic interactions between barley 
and AMF have been observed under drought condi-
tions, particularly at high AMF richness (Sendek et 
al. 2019) and suggest that unexpected alterations 
to plant-soil biotic interactions could occur under 
climate change.

Despite the benefits of AMF inoculation to crop 
production under water deficit, outcomes and 
challenges of AMF application for practical use 
in crop production may vary, e.g., in the event of 
possible colonization competition between the 
native populations of AMF in soils and the intro-
duced symbionts (Posta and Duc 2019). Recent 
research has shown that compatible combination 
of AMF with other beneficial microbes such as 
plant growth-promoting bacteria offering syner-

gistic effects on plant tolerance to stressful envi-
ronments including drought stress is a promising 
perspective (Rahimzadeh and Pirzad 2017). Stud-
ies on quantitative trait loci involved in mycorrhizal 
plant responses to drought stress are needed for 
breeding programs to create new cultivars with 
a combination of drought-tolerant traits and AM 
benefits. Although biotechnology practices have 
already made the production of efficient arbuscu-
lar mycorrhizal fungal inoculants possible for the 
past 15 years (e.g., Barea et al. 2005), the farmers’ 
awareness and acceptance of (relatively expensive) 
mycorrhizal inoculation remain low (Posta and Duc 
2019). To conclude, while AMF inoculation in crop 
productions under water deficit seems promising, 
it has not yet proven its ability to be usable and 
successful for Mediterranean farming systems.

Composting

Composting technology is a modern technology 
that can produce a stable humus complex, used 
as high quality compost, providing plants with all 
required nutrients and micro-elements. Produc-
ers claim that the structure of this humus may 
increase the water holding capacity of soils by up 
to 70%, and have established composting facilities 
with organic farms in the Egyptian desert (Bandel 
2009). However, results regarding water holding 
capacity development and enhanced resistance to 
drought are currently limited. 

Mediterranean-type ecosystems are characterized 
by hot and dry summers and strong seasonality 
(Olson et al. 2001). Cool wet winters promote bio-
mass growth and extended summer drought favors 
the regular occurrence of wildfires (Batllori et al. 
2013). Historically, fires started by lightning during 
wet or dry storms, which can be very common in 
many Mediterranean-type ecosystems (Pineda and 
Rigo 2017). The geographic location of Mediterra-
nean regions also benefits the frequency of strong 
wind events that further exacerbate fire activity. 
These ecosystems are dominated by fire-adapted 
vegetation resulting from a long evolutionary as-
sociation with fire (Pausas and Keeley 2009), where 
usually crown and high-intensity fires largely pre-
vail (Keeley et al. 2012a; Section 4.3.3.1).

Ever since prehistoric times, natural fire regimes 
have been altered by human activity in a multi-
tude of ways, by modifying fuel structure, igniting 

new fires and extinguishing wildfires (Bowman et 
al. 2011; Keeley et al. 2012b). In highly populated 
areas, such as the Mediterranean Basin, it makes 
little sense to refer to a “natural” fire regime be-
cause the footprint of human dynamics has inter-
acted with natural factors to mold fire regimes in 
time and space, and makes the characterization of 
a ‘baseline’ fire regime nearly impossible (Lloret 
and Vilà 2003). The alteration of ecosystems at un-
precedented rates may lead to unidentified chang-
es, making natural systems unable to persist 
within their natural variability regimes (Vitousek et 
al. 1997), potentially reaching no-return ecological 
states during this century (FAO 2013; Batllori et al. 
2017).

6.5.1 Future wildfire risks

The present escalation of environmental chang-
es is modifying fire regimes and producing new 

 6.5   Wildfires
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challenges for conservation management. In 
Mediterranean-type ecosystems of the European 
countries, afforestation linked to rural abandon-
ment has occurred in recent decades (Section 
4.3.1.2) and has shifted the systems to weather-lim-
ited fire regimes (Moreira et al. 2001; Pausas and 
Fernández-Muñoz 2012), in which the occurrence 
of fire-weather conditions drives fire activity (Pau-
sas 2004), increasing the uncontrollability of fire 
events. The increase of adverse weather events 
associated with warming climate has stimulated 
an unsustainable fire regime perceived as a threat 
by society. Urbanization of rural areas during the 
second half of the 20st century has further modi-
fied fire dynamics, aggravating fire hazards due to 
the increase in ignition sources in these areas and 
an increased exposure of human activities to fire 
effects (Lampin-Maillet et al. 2011).

Direct human fire actions have also altered fire 
regimes (Bowman et al. 2011; Loepfe et al. 2011; 
Oliveira et al. 2012; Brotons et al. 2013; Chergui 
et al. 2017; Costafreda-Aumedes et al. 2017). Be-
sides altering the spatial distribution of fuel, hu-
mans have also directly affected fire regimes by 
boosting anthropic ignitions and by suppressing 
fires with investments in huge fire-fighting struc-
tures (Section 4.3.3.1). In European Mediterrane-
an countries, fire management policies basically 
rely on the fire suppression principle, and the in-
creasing effort made in this direction has strongly 
modified fire regimes (Brotons et al. 2013; Turco 
et al. 2013; Moreno et al. 2014; Otero and Nielsen 
2017).

Climate change in the Mediterranean Basin is 
projected to increase summer heat wave events, 
extend fire seasons, increase yearly average tem-
peratures and increase precipitation irregulari-
ties (Section 2.2.5) (Field et al. 2014). How these 
changes will impact wildfires is still being studied 
(Westerling et al. 2011; Batllori et al. 2013). While 
a warmer climate will upsurge fire activity by in-
creasing water demand and decreasing fuel mois-
ture, this increase in temperatures may also lead 
to a decline in ecosystem productivity and thus to 
an overall reduction of fuel biomass (Flannigan et 
al. 2009; Batllori et al. 2013), which can potentially 
counteract warming effects on fire activity. Cli-
mate change may also promote the occurrence of 
other disturbances (forest outbreaks, windstorms, 
non-indigenous etc.) that can result in new driv-
ers of fire regime change (Section 2.4.1.1). There 
is still a significant gap in the understanding and 
projection of future climate shifts and its impacts 
on ecosystems (Schoennagel et al. 2017; Section 
4.3.2.1).

6.5.2 Management approaches, 
governance, and adaptation for wildfires

Changing fire regimes are now one of the most 
significant risks to natural systems and societies 
in places such as the Mediterranean Basin (Pausas 
et al. 2009). A deeper understanding of fire dynam-
ics is therefore needed to enhance possibilities of 
successful biodiversity conservation strategies at 
the ecosystem level. In addition, a comprehensive 
understanding of fire regime patterns and process-
es will help to transform our societies within the 
resilience paradigm (Tedim et al. 2016). In recent 
decades, a rise in urbanization at the wildland-ur-
ban interfaces has led to an increasing number of 
fatalities (Moritz et al. 2014). The political response 
has been directed towards trying to eliminate fire 
from the system, with very limited success any-
where in the world (San-Miguel-Ayanz et al. 2013; 
Moritz et al. 2014; Archibald 2016; Tedim et al. 
2016). There is an ongoing effort to promote de-
velopment under which people are less vulnerable 
and more resilient to fire impacts (Section 5.1.3).

The understanding on how the different drivers 
of change can further impact fire regimes is still 
limited (Flannigan et al. 2009; Westerling et al. 
2011; Regos et al. 2014). However, there is no clear 
consensus on future land-cover change directions 
because they rely more on local economic drivers 
with high uncertainty in their long-term predic-
tions (Rounsevell et al. 2006). In addition, the com-
plex interactions of drivers, the cascading effects 
of sequential disturbances (Batllori et al. 2017), 
and the uncertainty of future conditions (Thomp-
son and Calkin 2011) make the projection of future 
changes a major challenge. Fire research requires 
further tools and approaches that help to under-
stand ongoing changes and provide solutions to 
help to make effective decisions.

Available evidence from recent decades show a 
steady increase in wildfire events leading to ex-
treme wildfire events escaping from fire-fighting 
efforts, reaching acute fire intensities and often 
burning very large areas (San-Miguel-Ayanz et al. 
2013) (Section 2.6.3.3). Extreme wildfires have more 
significant consequences for societies and ecosys-
tem properties than small fires (Adams 2013; San-
Miguel-Ayanz et al. 2013; Tedim et al. 2013), and 
their occurrence is based on outstanding environ-
mental conditions (San-Miguel-Ayanz et al. 2013). 
In European countries from the Mediterranean 
Basin, the appearance of these wildfires has been 
related to an expansion of forests interacting with 
increasingly hotter and drier weather conditions 
(Tedim et al. 2013). The high fuel loads accumu-
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lated in forests have resulted in intense fire behav-
iors (high flames, fire spotting capacity) that make 
them very difficult for fire-fighting brigades to con-
trol. Moreover, suppression systems often collapse 
when protecting dispersed human assets, dimin-
ishing direct fire suppression effectiveness. Under 
a climate change context, these extreme wildfires 
are projected to increase (Amatulli et al. 2013).

6.5.3 Case studies

Fire suppression strategies based on proactive op-
portunity search and advanced fire behavior (Cas-
tellnou et al. 2019) have been successful in some 
regions. However, increasing fuel loads and great-
er climate vulnerability make fire-fighting strat-
egies prone to collapse in the event of extremely 
large or intense large fires, which has already 
happened in countries such as Greece and Portu-
gal in recent years. Proactive systems may open 
the way for local stakeholders to participate in 
fire-fighting decisions (Otero et al. 2018). However, 
the key tractable factor behind potential reduction 
in future aggressive fire behavior is fuel availability. 
On these lines, different regions deploy prescribed 
fire techniques to decrease fuel loads in particu-
lar areas. However, contrary to other places with 
Mediterranean-type climate (such as Australia 
and California), deployment of prescribed fire over 
large tracts of land raises public concerns and is 

difficult to implement in Mediterranean countries, 
particularly in areas with a high percentage of pri-
vate property (Fernandes 2018). In these cases, a 
combination of prescribed fire with other forest 
management techniques (such as using fuel for 
energy biomass) may be used (Regos et al. 2016). 
On the other hand, large tracts of conifer and eu-
calyptus plantations may increase the overall fire 
risk at the landscape scale, especially in compari-
son with mature native forests or more open farm-
land-dominated landscapes (Bowman et al. 2019).

6.5.4 Innovation

The key to sustainable, fire resilient landscapes is 
the development of sustainable socio-economic 
activities that allow local communities to thrive 
while ensuring low overall landscape risk and 
ensuring the persistence of other natural values 
(Smith et al. 2016). Such nature-based solutions to 
fire risk management (Duane et al. 2019) arise as 
an area where innovation, especially social inno-
vation, is expected to develop in the coming years 
(Chergui et al. 2017). Technological innovation is 
also rapidly being introduced into strategic and op-
erative fire-fighting, especially in relation to the use 
of remote sensors for data acquisition and remote 
control to predict extreme weather events leading 
to high-risk conditions conducive to intense fires 
(Peterson et al. 2017).

6.6.1 Future risks for soils

Soil erosion, by water or wind, is the most wide-
spread form of soil degradation worldwide 
(Panagos et al. 2017b). It is widespread in the 
Mediterranean region and includes sheet wash, 
rill and gully erosion, shallow landsliding, and 
the development of large and active badlands in 
both sub-humid and semi-arid areas (García-Ruiz 
et al. 2013). Soil erosion significantly alters the 
composition of soils, has a direct impact on the 
biogeochemical cycles that are responsible for 
supporting life on Earth and significantly reduces 
the ecosystem services and the economic systems 
that rely on them (Cherlet et al. 2018). The suscep-
tibility of Mediterranean soils to erosion, degrada-
tion and desertification under changing conditions 
is exacerbated by a number of factors, such as 
deforestation, frequent forest fires, the cultivation 
of steep slopes and overgrazing (García-Ruiz et 
al. 2013) (Section 2.4.1.2). According to the Unit-

ed Nations Convention to Combat Desertification 
(UNCCD, 2004), Portugal, Spain, Italy, Greece, 
Turkey and Morocco have a significant problem 
with desertification because of the occurrence of 
particular conditions over large areas. Internation-
al and interdisciplinary research initiatives have 
come to support this statement and have provided 
ample documentation that large areas of the Euro-
pean Mediterranean region are being increasingly 
affected by desertification, e.g., the EU MEDALUS, 
DISMED, MEDACTION, LEDDRA projects (Kosmas 
et al. 1999; Drake and Vafeidis 2004; Kepner et al. 
2006; Sommer et al. 2011) (Section 2.4.1.1).

The assessment of future degradation and deser-
tification risk and whether it can be reversed with 
land conservation and management practices, is 
affected by our ability to accurately set a baseline 
(Behnke and Mortimore 2016) or even decide on 
what constitutes an alarming rate. With the very 
slow rate of soil formation, any soil loss of more 

 6.6   Soil erosion, degradation and desertification
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than 1 t ha-1 yr-1 can be considered as irreversi-
ble within a time span of 50-100 years. However, 
the concept of variable tolerable rates of erosion 
should be noted and requires further definition (di 
Stefano and Ferro 2016).

Numerous efforts to estimate current erosion rates 
have been reported in the literature, most common-
ly using empirical models (e.g., RUSLE) or physical 
process-based models (e.g., PESERA). A recent at-
tempt to quantify soil erosion by water over the Eu-
ropean region using the RUSLE model has reported 
very high soil loss rates for European Mediterrane-
an countries of commonly over 50 t ha-1 yr-1, mainly 
in southern Spain and Italy and to a lesser extent 
in Greece, Cyprus and France (Corsica) (Panagos 
et al. 2015). A more recent global modelling effort 
based on RUSLE by Borrelli et al. (2017) assessed 
the impact of land use change on soil erosion be-
tween 2001 and 2012. With regard to the Mediter-
ranean Basin, it corroborated the previous findings 
and identified Morocco, northern Algeria, western 
Syria, Albania, Serbia, Montenegro and Bosnia Her-
zegovina as hotspots where erosion rates were pre-
dicted to increase according to a baseline scenario. 
Syria, Serbia, Croatia, Montenegro and Morocco 
were also projected to have increased soil erosion 
rates even with a conservation scenario. It is worth 
noting that soil erosion risk models contain erosiv-
ity and erodibility factors that reflect average-year 
rainfall. Therefore the currently available values 
for these factors may inadequately represent the 
more frequent and intense storms projected under 
most climate change scenarios (Jones et al. 2012). 
Moreover, Eekhout and de Vente (2019) have shown 
that applying different bias correction methods to 
contrasting Mediterranean conditions can lead to 
disparate soil erosion projections of either a future 
decrease or increase.

Other efforts have aimed at assessing the sensi-
tivity of an area to degradation and desertification 
processes, using a system of indicators developed 
during the MEDALUS EU project (Kosmas et al. 
1999), including soil erosivity, vegetation cover, 
climatic parameters (such as aridity), land use 
and land management. These studies have been 
applied in study sites throughout the Mediterra-
nean, and have often identified hotspots of critical 
sensitivity to degradation and desertification (e.g., 
Lavado Contador et al. (2009) in Spain; Salvati and 
Bajocco (2011) in Italy; Symeonakis et al. (2014) in 
Greece; Kamel et al. (2015) in Lebanon; Boudjem-
line and Semar (2018) in Algeria, and Ait Lamqa-
dem et al. (2018) in Morocco). Prăvălie et al. (2017) 
also applied this approach to the entire European 
Mediterranean for the years 2008 and 2017 and 

found widespread increases in sensitivity to deser-
tification: the amount of territory with a high or very 
high sensitivity to desertification had increased, in 
less than a decade, by 177,000 km2.

Adding to the complexity of assessing the future 
risks related to soil erosion and the reversibility of 
related degradation and desertification, climate 
change is expected to alter erosion rates in a com-
plex, non-linear way. Rainfall changes (in either the 
intensity only or in the amounts as well), along with 
expected changes in temperature, solar radiation, 
and atmospheric CO2 concentrations, will have 
significant impacts on soil erosion rates (Nunes et 
al. 2013; Li and Fang 2016; Zare et al. 2016; Zhou 
et al. 2016; Guo et al. 2019). Kirkby et al. (2004) de-
scribe a non-linear spatial and temporal response 
to climate change, with relatively large increases 
in erosion during wet years compared to dry years, 
and sporadic increases locally. However, the pro-
cesses involved in the impact of climate change 
on soil erosion by water are complex, involving the 
abovementioned changes in rainfall amounts and 
intensities, the number of days of precipitation, 
plant biomass production and residue decompo-
sition rates, soil microbial activity, evapotranspi-
ration rates, and shifts in land use necessary to 
accommodate the new climatic regime (Nearing et 
al. 2004). Projections of changes in factors related 
to desertification indicate significant exacerbation 
of desertification risk in southern Europe and par-
ticularly in Spain, southern Italy, and Greece (Pa-
nagos et al. 2017a; Samaniego et al. 2018).

6.6.2 Management approaches, 
governance, and adaptation for soil 
protection
Soil erosion is greatly affected by human-environ-
ment interactions, most notably land use and land 
use changes. However, overly simplistic cause 
and effect approaches to what leads to degrada-
tion and desertification have now been abandoned 
(Cherlet et al. 2018) as the complex nature of 
non-equilibrium systems has been identified and 
acknowledged (Reynolds et al. 2007; Behnke and 
Mortimore 2016). A more integrated land manage-
ment approach is currently driving policy-making, 
including the development and implementation of 
adaptive practices of sustainable land manage-
ment. The World Overview of Conservation Ap-
proaches and Technologies (WOCAT) is a network 
that develops, archives, shares and disseminates 
sustainable land management knowledge to im-
prove human livelihoods and the environment (Lin-
iger et al. 2007), gaining broad appreciation from 
all involved stakeholders.
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Sustainable land management approaches are 
continuously adapted in response to changing 
environmental conditions and human needs. 
From a list of hundreds of archived case stud-
ies of sustainable land management in the 
Mediterranean region, five types of measures 
are identified that can be taken to address land 
degradation (Sections 3.2.3.2 and 4.3.3.3): (i) ag-
ronomic measures: measures that improve soil 
cover (e.g., green cover), measures that enhance 
organic matter (e.g., manuring), soil-surface 
treatment (e.g., conservation tillage), and sub-
surface treatment (e.g., ripping); (ii) vegetative 
measures: plantation of trees and shrubs (e.g., 
live fences), grasses and herbaceous plants (e.g., 
grass strips); (iii) structural measures: terraces, 
bunds, banks, dams, pans, ditches, walls, barri-
ers, and palisades; (iv) management measures: 
change of land use type, change in management/
intensity level, change in timing of activities, and 
control/change of species composition, and (v) 
combinations of the other four types (Liniger et 
al. 2007; Cherlet et al. 2018).

With regard to policy, at the moment, only a few 
EU Member States have specific legislation on 
soil protection. Soil is not subject to a compre-
hensive and coherent set of rules in the European 
Union. Existing EU policies in areas such as agri-
culture, water, waste, chemicals, and prevention 
of industrial pollution indirectly contribute to the 
protection of soils. However, as these policies 
have other aims and scopes of action, they are 
not sufficient to ensure an adequate level of pro-
tection for all soils in Europe46. A limited num-
ber of countries or Autonomous Regions have 
Soil Protection Plans (e.g., the Basque Auton-
omous Country (Landeta 1995), Italy (Law 97 of 
1994)) while a much larger number have ratified 
the UNCCD and have prepared a National Pro-
gramme to Combat Drought and Desertification 
or National Action Plan, namely, Algeria, Egypt, 
Greece, Italy, Lebanon, Morocco, Portugal, Spain, 
Tunisia and Turkey.

6.6.3 Case studies

Based on the WOCAT classification of measures 
that address soil erosion and land degradation, the 
following is a successful example of a structure 
measure from Spain. Rodrigo-Comino et al. (2017) 
assessed agri-spillways as a soil erosion protec-
tion measure in Mediterranean sloping vineyards 
in southern Spain. Their results showed a great 
capacity by rills to canalize large amounts of water 

and sediments, and higher water flow speeds and 
sediment concentration rates than typically found 
in other Mediterranean areas and land uses (such 
as badlands, rangelands or extensive crops of ol-
ives and almonds). They concluded that agri-spill-
ways can be a potential solution as an inexpensive 
method to protect the soil in sloping Mediterrane-
an vineyards.

Another example for sustainable land manage-
ment comes from Italy, a case of a vegetative 
measure. Bagagiolo et al. (2018) studied the 
effect of controlled grass cover on water and 
soil losses in different rain-fed sloping fields in 
northwestern Italy. Rainfall, runoff and erosion 
variables were monitored in hydraulically bound-
ed vineyard plots, where the inter-rows were 
managed with tillage and grass cover. The grass 
cover proved to be effective in decreasing runoff 
and soil losses during most of the events, reduc-
ing soil losses especially when intense events oc-
curred (i.e., during summer). Their results also 
showed the fundamental role of contour-slope 
row orientation in reducing runoff and soil losses, 
irrespective of the adopted inter-row soil man-
agement approach.

6.6.4 Innovation

Land Degradation Neutrality (LDN) is a new con-
ceptual framework, introduced by the UNCCD to 
halt the loss of land due to unsustainable man-
agement and land use changes (Cowie et al. 2018). 
Its purpose is to maintain the land resource base 
so that it can continue to supply ecosystem ser-
vices while enhancing the resilience of the com-
munities that depend on the land (Metternicht et 
al. 2019). The LDN framework is designed to apply 
to all land uses and all types of land degradation. 
To achieve LDN, countries will need to assess the 
effect of land use decisions and undertake meas-
ures to restore degraded land so as to compen-
sate anticipated losses (Cowie et al. 2018). The 
UNCCD suggests that countries should consider 
the social, economic and environmental outcomes 
of alternative land degradation and desertification 
mitigation options when planning LDN measures 
and should strive to engage relevant stakehold-
ers. Some applications of the LDN framework 
have only just begun to materialize (e.g., in south-
east Australia, Cowie et al. 2019), but none have 
yet been applied in Mediterranean countries or 
climates.
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Temperature extremes occur on different time 
scales and need temporally high-resolution data 
to accurately assess possible changes (IPCC 
2012). Temperature is associated with different 
types of extremes. It is of importance to distin-
guish between maximum, minimum and daily 
mean, as well as between cold and warm ex-
tremes, as they have different impacts on human 
health (Sections 5.2.3 and 6.2), the physical envi-
ronment (Section 2.3), ecosystems (Section 4.3), 
and energy consumption (Section 3.3). Increases 
in the intensity, number, and length of heat waves 
have been reported for Mediterranean summers 
since the 1960s (Kuglitsch et al. 2010; Efthymiadis 
et al. 2011; Lelieveld et al. 2012) (Section 2.2.4.1).

6.7.1 Future heat wave risks

Future projections for the Euro-Mediterranean 
area have shown spatial heterogeneity in increas-
es in the intensity, frequency and duration of heat 
waves (Section 2.2.4.2). Major increases in warm 
temperature extremes are expected across the 
Mediterranean region (Jacob et al. 2014; Russo 
et al. 2015; Zittis et al. 2016; Pereira et al. 2017) 
including hot days (Tmax >30°C) and tropical nights 
(Tmin >20°C) (Giannakopoulos et al. 2009; Tolika et 
al. 2012). Larger increases in intensity and du-
ration are projected for southern Europe where 
heat wave days are projected to increase 20-fold 
by 2100 (Fischer and Schär 2010). Other projec-
tions over the Mediterranean include dramatic 
increases in the frequency of hot temperature 
extremes and heat stress by the end of the 21st 
century (Section 2.2.4.2). Cities in southern Europe 
are expected to face longer heat waves (Guerreiro 
et al. 2018), thus increasing their vulnerability to 
climate impacts and the need for costly adaptation 
measures.

Projected changes in the characteristics of fu-
ture heat waves are related to increasing risks 
in several sectors. Intense and long heat waves 
are related to increased morbidity and mortality 
in Mediterranean countries, especially in cities 
where the built environment amplifies the expo-
sure to heat (Sections 5.2.2.8 and 6.2). Increasing 
temperatures affect overall energy demand for 
cooling, while heat waves may also affect peak 
demand that is mainly provided by electricity (EEA 
2019a). The largest absolute increases in electric-
ity peak demand are projected for Italy, Spain and 
France (Damm et al. 2017). The tourism sector 
plays an important role for the economic well-be-
ing and livelihoods of Mediterranean countries 

(Section 5.1.1.3). Frequent heat waves may re-
duce tourist flows by the mid-21st century due 
to exceeded comfort levels (Hein et al. 2009) and 
could shift tourist demand outside the peak sum-
mer time (Perry 2003; Esteban-Talaya et al. 2005; 
Ciscar et al. 2009). Future increased extreme 
temperatures will increase the impact on trans-
port infrastructure in the Mediterranean and will 
lead to damage to roads, rail, airports, and ports 
(Nemry and Demirel 2012; UNCTAD 2017; Vogel et 
al. 2017) with significant increases in adaptation 
costs (Nemry and Demirel 2012). High temper-
atures and drought will increase forest fire risk, 
which might lead to drastic damages in Mediter-
ranean forests (Trigo et al. 2013; Gudmundsson et 
al. 2014; Turco et al. 2018) (Section 4.3.2.1). High 
future temperatures and heat waves have a direct 
impact on crop growth conditions, crop produc-
tivity and crop distribution, agricultural pests and 
diseases, and the conditions for livestock produc-
tion in the Mediterranean (Section 3.2.1.4). These 
impacts will generate changing land-use patterns 
and will trigger economy-wide effects (Skuras and 
Psaltopoulos 2012). In southern Europe, yields for 
all the dominant (non-tropical) crops decreased 
by 5-60% because of climate change, depending 
on the country, the crop and the scenario (Sec-
tion 3.2.2.1). The combined effect of extreme heat 
events and shorter growing seasons will result in 
a loss of land suitable for agriculture (Fraga et al. 
2016; Resco et al. 2016; EEA 2019b) in southern 
Europe (Section 3.2.2.1). Furthermore, the Medi-
terranean agro-climate zone is expected to expe-
rience pronounced increases in the areas affected 
by mild to strong heat stress, which will occur 
earlier and will impact winter wheat (Ceglar et al. 
2019).

6.7.2 Management approaches, 
governance, and adaptation for heat wave 
risks
Reducing the direct impacts of extreme temper-
atures requires focus on information and pre-
paredness associated with early warning (PPRD 
East 2013). The need for the implementation of 
early warning systems has risen since the 2003 
summer heat wave (García-Herrera et al. 2010). 
Adaptation for heat waves in cities is a major chal-
lenge in design and costs estimation (Guerreiro et 
al. 2018). Prevention in the long term must further 
ensure that the vulnerability of the population and 
relevant infrastructure are reduced by improving 
urban planning and architecture (e.g., increasing 
the canopy cover in urban areas, cooling open 
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public areas, adjustments in energy genera-
tion and transmission infrastructure), as well as 
through energy and transport policies (PPRD East 
2013). Strategies are needed to reduce heat expo-
sure of individuals and communities (especially 
vulnerable populations), to plan health and social 
services and infrastructure, and to provide timely 
information to the population (Future Earth 2019). 
Some of the adaptation measures for the project-

ed changes entail fundamental, and expensive 
re-engineering of each city or water resource sys-
tem. In the Mediterranean, significant adaptation 
measures to climate extremes, primarily in the 
form of structural protection measures, have al-
ready been implemented in the framework of the 
adaptation plans at the city, regional and national 
levels across the Mediterranean Basin.

6.8.1. Future flood risk

The Mediterranean region is characterized by 
numerous water courses with small and steep 
river catchments (Tarolli et al. 2012; Tramblay et 
al. 2019), although with notable exceptions, such 
as the Nile, Rhone, Ebro and Po rivers (Section 
3.1.1.1). The steep orography surrounding the 
Mediterranean Sea favors the occurrence of in-
tense precipitation events triggered by spatially 
confined convective processes (Amponsah et al. 
2018), especially in autumn (Gaume et al. 2016) 
(Section 2.2.5). The resulting runoff can produce 
devastating flash floods in small river basins, i.e., 
less than 2,000–3,000 km2 in size (Amponsah et al. 
2018), especially where urbanized areas are locat-
ed downstream of these small basins (Llasat et al. 
2010; Gaume et al. 2016) (Section 3.1.3.3).

The magnitude and impact of floods vary signifi-
cantly over the Mediterranean region, with more 
frequent and severe events in the western part 
(Llasat et al. 2010; Gaume et al. 2016). Some 
sub-regions in southwestern Europe, includ-
ing Liguria and Piedmont in Italy, Cévennes-Vi-
varais-Roussillon in France, and Catalonia and the 
province of Valencia in Spain are particularly prone 
to extremely severe events, due to geographic and 
climatological conditions (Gaume et al. 2016). 
Floods in Morocco, Algeria and Tunisia are less 
frequent but they are often associated with high 
mortality, while European countries suffer the 
highest economic damages (Llasat et al. 2010).

Trends in annual maximum peak flow in European 
Mediterranean countries have been decreasing in 
the past decades (Blöschl et al. 2019). However, 
no significant trend in the frequency and mag-
nitude of extreme floods has been found for the 
Mediterranean as a whole (Gaume et al. 2016), or 
for large regions such as Catalonia and southern 
France (Llasat et al. 2005, 2014; Tramblay et al. 

2019), even though local increasing trends have 
been observed (e.g., Genoa urban area, Faccini 
et al. 2018; Section 3.1.3.3). Future trends in flood 
patterns still appear unclear, with different stud-
ies reporting contrasting results (Kundzewicz et 
al. 2017), partly because of the limitations of re-
gional- and global-scale models in representing 
small catchments (Tramblay et al. 2019) (Sections 
3.1.4.1 and 3.1.4.2: Floods).

6.8.2 Management approaches, 
governance, and adaptation for flood 
protection
Flash flood risk management presents several 
challenges with respect to other types of flooding 
processes. The triggering meteorological and hy-
drological processes are difficult to monitor with 
traditional hydro-meteorological networks, given 
the small spatial and temporal scales involved 
(Amponsah et al. 2018). Moreover, flash flood risk 
can be associated with other hazards, particularly 
in mountain settings (e.g., landslides and debris 
flows). This complicates the implementation of 
forecasting and early warning systems as well as 
the design of physical flood defense infrastructure 
(Borga et al. 2011). Preparedness strategies need 
to be structured in accordance with these and 
other characteristics, such as short to negligible 
warning lead times, immediate threat to life and 
properties requiring quick response times, as well 
as the need for refuges and safe places (Borga et 
al. 2011). This requires effective coordination of 
response management by authorities and public 
awareness.

Good practices in flash flood risk management re-
ported in the literature and applied in several case 
studies include: post-event surveys to collect in-
formation on flood-generating processes and im-
pacts (Kreibich et al. 2017; Amponsah et al. 2018), 
development of dedicated early warning systems 
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(EWS) based on gauge and radar networks, nu-
merical weather and hydrological predictions 
(Corral et al. 2019), construction of check dams 
and reforestation in upstream areas (Kourgialas 
and Karatzas 2017), floodplain restoration and 
bank erosion protection (Kourgialas and Karat-
zas 2017; Cortès et al. 2018), suitable agricultural 
practices to retain water and reduce flood damage 
to crops (Kourgialas and Karatzas 2017), improve-
ment of drainage systems in urbanized areas 
(Cortès et al. 2018), increased citizen awareness 
(Borga et al. 2011; Cortès et al. 2018; Faccini et al. 
2018), emergency management plans (Kreibich et 
al. 2017), and viable insurance schemes for dam-
age compensation (Faccini et al. 2018).

6.8.3 Case studies and innovation

At the European level, the European Directive 
on Floods (Directive 2007/60/CE, European Par-
liament 2007) regulates flood risk management 
plans, focusing on prevention, protection and 
preparation. The implementation of the Floods 
Directive has driven notable improvements, also 
in flash flood risk management. According to 
Kreibich et al. (2017), vulnerability to flash floods 
was greatly reduced in recent events in Italy and 
Spain as compared to similar events that occurred 
several decades ago, due to improved awareness, 
preparedness and emergency management.

Cortès et al. (2018) report that in the Metropolitan 
Area of Barcelona, the implementation of preven-
tion measures such as constructing rainwater 
tanks, or the establishment of warning systems, 

decreased the impacts of flood events between 
1981 and 2015. Nowadays, different flash-flood 
forecasting systems are present in Catalonia 
(Spain), Liguria (Italy) and Southern France (Corral 
et al. 2019). Notably, the European Flood Aware-
ness System (EFAS)47 provides different flash flood 
indicators (Raynaud et al. 2015; Corral et al. 2019), 
and has recently been extended to the entire 
Mediterranean Basin, therefore offering the first 
pan-Mediterranean forecasting system for river 
and flash floods. Finally, in Spain and France, ded-
icated national insurance schemes against nat-
ural disasters exist, which cover losses through 
economic compensation.

However, not all Mediterranean areas benefit from 
recent advances. Information on flood hazard and 
risk is missing or scarce in some southern and 
eastern Mediterranean countries (Llasat et al. 
2010), as well as in small and ungauged catch-
ments in Europe (Kourgialas and Karatzas 2017). 
Adaptation plans in southern Europe suffer from a 
lack of funding in rural and low-populated areas 
(Aguiar et al. 2018). Challenges are still present 
even in large cities. For example, the city of Genoa, 
Italy, is particularly exposed to flash floods due to 
its geographical location, meteorological con-
ditions and dense urbanization with inadequate 
planning (e.g., reduced or culverted river network 
in the river valleys) (Faccini et al. 2018). While 
progress has been made in increasing citizen 
awareness and improving early warning systems, 
structural solutions (e.g., diversion channels, re-
location of the most exposed properties) appear 
unfeasible due to the large areas involved.

6.9.1 Future risk associated with sea-level 
rise

Mediterranean mean sea levels are projected to rise 
by 21 to 27 cm by 2050, under RCP4.5 and RCP8.5 
scenarios, respectively (Jackson and Jevrejeva 2016; 
Jevrejeva et al. 2016). By the end of the century, the 
mean sea level would range between 20 cm and 110 
cm above the present level (1980-1999), depending 
on the greenhouse gas emission scenario and the 
modeling system (Section 2.2.8.2). Such sea-level 
rise, combined with variations in extreme weather 
and thus waves and storm surges, will substan-
tially increase the frequency of extreme events as 

the present day event of the century is expected to 
occur every 10 years by 2050 and at least yearly by 
the end of the century (Vousdoukas et al. 2018b). All 
the above changes are projected to expose Mediter-
ranean societies to unprecedented levels of coastal 
flooding and losses. Without considering socio-eco-
nomic development, a 6 to 8-fold increase in annual 
damage is expected by 2050 and at least 25 times 
more annual damage is expected by the end of the 
century if no further investments in coastal protec-
tion are undertaken (Vousdoukas et al. 2018a). When 
climate change projections are combined with so-
cio-economic scenarios, expected annual damage is 
projected to rise by 90 to 900 times, depending on 
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47 https://www.efas.eu/
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the scenario. Adaptation in the form of dykes can cut 
damage costs in half, with countries such as France, 
Spain, Greece, and Italy having the highest damage 
costs in absolute terms (Hinkel et al. 2010), and Egypt 
and Tunisia facing the highest damages relative to 
their annual Gross Domestic Product (GDP) (Hinkel 
et al. 2012). Accordingly, Italy and France have the 
largest length of coasts where protection would be 
economically beneficial (Vousdoukas et al. 2020).

Most coastal regions globally are exposed on a daily 
basis to tidal water level variations of more than 50 
cm, and ocean waves, which require wider active 
beach zones to act as a buffer against the ocean’s 
forces. This is not the case in the Mediterranean, 
which is a micro-tidal area where a significant part of 
the coastline is not exposed to harsh marine storms 
(Section 2.2.8). The above-mentioned characteris-
tic makes the Mediterranean more susceptible to 
coastal hazards in view of climate change compared 
to other parts of the world. It is important to high-
light that for many Mediterranean locations; the pro-
jected sea-level rise is of similar magnitude to the 
increase in sea levels during extreme events. At the 
same time, communities have developed lifestyles 
adapted to non-dynamic water levels, as several 
activities take place and infrastructure is located in 
close proximity to the sea (within few meters in many 
cases). This is also because apart from local-scale 
erosion, the coastline has been relatively stable for 
global standards with the exception of some cases 
of stronger shoreline retreat trends, observed in the 
Nile delta, Tunisia, Venice, and Albania (Luijendijk et 
al. 2018; Mentaschi et al. 2018).

Finally, interconnected hazards may exacerbate is-
sues related to sea-level rise. For example, while 
the coastal environment encompasses particular 
characteristics distinct from general issues of water 
(such as shortages and drought) and precipitation 
(or lack thereof), there are numerous interconnec-
tions between water runoff, drainage and watershed 
management that are linked to hazards related to 
sea-level rise (O’Connor et al. 2009; Lichter and 
Felsenstein 2012; Portman 2018). Such hazards may 
result in compound effects that can lead to non-line-
ar increases in the magnitude of individual hazards.

6.9.2 Management approaches, 
governance, and adaptation for coastal 
protection
It is important to highlight that coastal erosion in 
Mediterranean countries has been primarily driv-
en by human interference with natural processes 

(Section 4.2.1). For example, inadequate coastal 
management practices and, most importantly, 
unregulated construction have been reported in 
several regions (ERML 2012; de Leo et al. 2017; 
UNDP 2017). A recurring problem is the reduction 
or depletion of terrestrial sediment supply, that 
would naturally feed sandy beaches, resulting 
from the construction of upstream dams (Poulos 
and Collins 2002) (Section 4.2.1.2). Such examples 
include the Beni Khiar and Dar Chaabane coasts 
and the Oued El Kebir river (Imen and Souissi 
2018), Lesvos Island (Velegrakis et al. 2008), and 
Rhodope, Greece (Xeidakis et al. 2006).

Coastal adaptation practices can be classified 
into the following broad categories: protect, ac-
commodate, advance, and retreat. Under protec-
tion practices, societies tend to "hold the line" 
by installing coastal protection elements. Tra-
ditionally these were mainly "hard structures" 
such as breakwaters and seawalls (Lamberti 
and Zanuttigh 2005). Dykes are another potential 
flood prevention solution, but they are very rare 
in the Mediterranean, as they are more common 
in meso-/macro-tidal environments. The same 
applies for surge barriers, with the only example 
being the MOSE system in Venice (CVN 2019). 
Submerged breakwaters reduce wave energy and 
mitigate erosion and have also become common 
practice along the Mediterranean coastline (To-
masicchio 1996; Sancho-García et al. 2013; Bou-
vier et al. 2017).

"Soft-protection", in the form of beach and shore 
nourishment as well as dune or wetland resto-
ration, has become a more common alternative 
to hard structures in recent decades, with many 
examples, especially in France, Spain and Italy 
(Hamm et al. 1998; Hanson et al. 2002). Lately 
there is a tendency towards Ecosystem-based 
Adaptation (EbA) (Section 4.2.3.5), also referred 
to as “soft protection”, using ecological features 
such as reefs and/or coastal vegetation as coastal 
protection elements. Among the few examples of 
EbA is the coastal protection service provided by 
the Étang de Vic coastal lagoon in France (Con-
servatoire du littoral)48 and the coastal dune re-
construction at the natural protection area of the 
Bevano river mouth in Emilia Romagna (Italy) (Gi-
ambastiani et al. 2016).

Until recently, advances through land reclamation 
has been more related to the need for more space 
to accommodate human activities (Mentaschi et 
al. 2018), but is also being increasingly considered 
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in the context of adaptation to sea-level rise. How-
ever, this practice is practically non-existent in 
the Mediterranean Sea. The same can be argued 
for accommodation i.e., increasing the resilience 
of infrastructure by making it less vulnerable to 
flooding. Recent studies have shown that flood fa-
talities have been reduced as societies are learning 
to live with flood hazards (Bouwer and Jonkman 
2018), while there have been efforts to develop 
and implement Early Warning Systems for disas-
ter risk reduction (Ciavola et al. 2011; Harley et al. 
2011; Fernández-Montblanc et al. 2019). However, 
there are very few, if any, examples of large-scale 
efforts to develop flood-resilient buildings around 
the Mediterranean coastline. The same applies 
to the retreat option in which exposure to coastal 
hazard is reduced by removing assets and people 
from potentially vulnerable areas.

6.9.3 Case studies

Hard protection structures can be found all along 
the Mediterranean coastline and in most cases 
they contribute to sustaining a safe and functional 
coastal zone (Iskander et al. 2007; Becchi et al. 
2014). However, as it has been already pointed 
out in other parts of the world (Cooper and Pilkey 
2012), this comes at a price. Hard protection can 
alter nearshore sediment transport patterns and 
result in beach erosion. Such side effects have 
been observed in Greece and Cyprus (Tsoukala 
et al. 2015), Tunisia (Saïdi et al. 2012), and Egypt 
(Masria et al. 2015). In addition, hard structures 
can affect the nearshore ecology, as they can act 
as habitats for species which normally thrive in 
rocky shores (Munari et al. 2011). However such 
effects have been shown to depend on local con-
ditions and not to be overwhelming (Colosio et al. 
2007; Becchi et al. 2014).

There have been several beach nourishment pro-
jects along the Mediterranean coastline, some of 
which have been reported in the scientific litera-
ture (Hamm et al. 1998; Hanson et al. 2002; Mas-
ria et al. 2015) (Section 4.2.1.1). These initiatives 
are ecologically milder but can still come with 
negative impacts (Colosio et al. 2007). For exam-
ple, nourishment at Poniente Beach (Benidorm, 
Spain) has been shown to have caused the dis-
appearance of the Posidonia oceanica meadows, 
which resulted in a strong beach erosion process 
(Aragonés et al. 2015). However, there are sever-
al studies which report that small-scale beach 
nourishments appear to be an eco-sustainable 

approach to combat coastal erosion (Borg et al. 
2006; Danovaro et al. 2018). Geotextiles have been 
installed in several locations as a soft protection 
practice, but information on their performance is 
limited in the scientific literature with a few ex-
ceptions, such as the positive outcome in Lido de 
Sete, in France (Balouin et al. 2015). It is important 
to highlight that most of the literature shows that 
no universal solution exists and that robust plan-
ning and implementation is a prerequisite for any 
successful intervention.

6.9.4 Innovation

Risk and climate change adaptation efforts are 
inextricably linked. Having acknowledged risks, 
some countries have developed either “resilience 
toolkits” (e.g., US) or “adaptation toolkits” (e.g., 
Ireland) that address how civil society must pre-
pare for hazards, with emphasis on coastal areas 
(Paterson et al. 2017; McDermott and Surminski 
2018; Gardiner et al. 2019). Most Mediterranean 
countries are lagging behind in this respect. Re-
cently there has been significant work on at least 
assessment of future risks pertaining to air, water, 
and sea (Navarra and Tubiana 2013). However, little 
has been done on the aspects of extreme hazards 
and the effects of climate change on society, which 
could encourage more resources (both human and 
financial) being dedicated to adaptation planning. 
Nevertheless, some examples of such actions 
exist. Countries such as Italy, France and Spain 
have established national and subnational initi-
atives on coastal adaptation and management49) 
(Losada et al. 2019) while multi-national initiatives 
such as the Bologna Charter50 have introduced ac-
tion plans for the protection and sustainable de-
velopment of coastal areas in the region through 
e.g., the establishment of a network of coastal 
observatories. 

At the same time, interconnections between dif-
ferent types of hazards need to be addressed in 
research, planning and management for adapta-
tion. To some extent, such interconnections are 
recognized and have led to initiatives. One example 
is the DANUBIUS-RI (Bradley et al. 2018), which is 
a platform designed to support interdisciplinary 
research on rivers and seas by facilitating biogeo-
chemical monitoring while also spanning various 
aspects of environmental, social and economic 
sciences. These types of initiatives will no doubt 
support projects and future risk assessments re-
lated to climate change. 

49 www.erosionecostiera.isprambiente.it

50 www.bolognacharter.eu
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There is still a lack of information on the risks 
associated with the economic, livelihood and cul-
tural consequences of coastal change (Reimann 
et al. 2018b) at the regional scale that would en-
courage progress towards the international and 
transboundary cooperation needed to address 
these challenges among Mediterranean coun-
tries. Transboundary cooperation is particularly 
difficult in the deep-sea areas, far from national 
jurisdiction. In these areas, cooperation is volun-
tary, often temporary and malleable at best, and 
non-existent at worst, even though it is compul-

sory for EU Member States based on Directive 
2014/89/EU. Beyond the EU Mediterranean space, 
cooperation is voluntary. Much more oversight, 
accountability and especially monitoring is need-
ed internationally (Neumann and Unger 2019), 
particularly in the Mediterranean. With regard to 
climate change, the “Our Ocean” Conference se-
ries, which has a strong topical relationship with 
SDG 14, has adopted climate change as one of its 
six areas of action (others are: marine protected 
areas, sustainable fisheries, marine pollution, 
sustainable blue economy, and maritime security).
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6.10.1 Future risk of marine heat waves

Marine heat waves are periods of extremely warm 
sea surface temperature that persist from days to 
months and can extend up to thousands of kilo-
meters (Section 2.2.7.1). Recently observed marine 
heat waves demonstrated the strong influence 
of extreme climate events on marine organisms, 
including mass mortalities and shifts in species 
ranges (Rosenzweig et al. 2008), but also econom-
ic impacts on fisheries and aquaculture (Section 
4.2.1.1). In coastal areas at regional scales, lit-
tle is known about the propagation at depth of 
a warming signal detected in sea temperature 
surface conditions. This is due to the scarcity of 
continuous observational data sets over the long-
term (>10 years) from surface down through the 
water column (+40 m depth). Analysis of in situ 
temperature data available from different coastal 
sites confirmed warming trends in deeper layers 
consistent with those reported for surface wa-
ters (Bensoussan et al. 2019a). Thus, the warm-
ing is not limited to the surface, but propagates 
into deep coastal water layers (up to 80 m depth). 
Importantly, this warming displays significant 
variability along the depth gradient depending on 
local thermal regimes and seasonal stratification 
dynamics (Garrabou et al. 2019a). Likewise, ma-
rine heat waves have been recorded along depths 
with different intensity and duration depending on 
the years and concerned areas (Bensoussan et al. 
2019b). Sustained observation in pilot sites will 
provide important information to validate models 
and track subsurface warming trends.

Like their atmospheric counterpart, Mediter-
ranean marine heat waves are expected to in-
crease in intensity, frequency and duration under 
anthropogenic climate change (Section 2.2.7.2) 

(Coumou and Rahmstorf 2012; Oliver et al. 2018). 
Darmaraki et al. (2019) used ensemble set of 
fully coupled Regional Climate Models (RCMs) 
from the Med-CORDEX initiative and a multi-sce-
nario approach of different representative con-
centration pathways (RCPs), where marine heat 
waves become stronger and more intense under  
RCP4.5 and RCP8.5 than RCP2.6 by the year 2100. 
Under RCP8.5, a long-lasting Mediterranean ma-
rine heat wave appears at least once every year. 
Therefore, future marine heat waves appear up to 
three months longer, about four times more in-
tense and 42 times more severe than at present 
(Section 2.2.7.2) and will affect the entire basin, 
predominantly in the warm and dry season from 
June to October. The main trigger can be attrib-
uted to the increase in the mean sea surface 
temperature (SST) and the daily SST variability. 
However, there is a lack of information on future 
trajectories of temperature conditions in coastal 
waters (from surface to 50 m depth and beyond) 
mainly due to the lack of customized modelling 
for these hydrodynamically complex areas. The 
results that are available point to an unambiguous 
increase in mean temperatures and frequency of 
extreme events, consistent with results obtained 
at the regional level (Garrabou et al. 2019b).

Current and future climate change trajectories 
are considered one of the major concerns for the 
conservation of marine biodiversity (Hughes et al. 
2017; Cramer et al. 2018). In the Mediterranean, 
observed warming is already significantly affect-
ing marine ecosystems (Sections 4.1.1 and 4.2.1), 
resulting in two main impacts: i) the shift in spe-
cies distribution (indigenous and non–indigenous) 
and ii) the occurrence of unprecedented mass 
mortality events (MMEs). Besides these major im-
pacts, other effects associated with warming are 
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being reported as well, such as species prolifer-
ation and changes in species reproduction timing 
and migration patterns (Otero et al. 2013). Overall 
climate change is already dramatically affecting 
the abundance and distribution of species as well 
as the functioning of ecosystems (Sala et al. 2011; 
Givan et al. 2017; Cramer et al. 2018). It is difficult 
to foresee with precision to what extent the cur-
rent climate trends will affect marine ecosystems 
and key species in the Mediterranean Sea in the 
coming decades. However, recent studies indi-
cate that an increased extinction risk for endemic 
fauna, loss of habitat complexity and changes in 
ecosystem configurations is occurring (Ben Rais 
Lasram and Mouillot 2009; Ben Rais Lasram et al. 
2010; Sala et al. 2011; Azzurro et al. 2019; Monte-
ro-Serra et al. 2019).

Three main patterns in species distribution as-
sociated with warming are being observed: i) 
northward expansion are extremely clear for 
warm-affinity native species such as the bluefish, 
Pomatotus saltarix (Dulčić et al. 2005; Sabatés et 
al. 2012), whose Mediterranean distribution was 
historically restricted to the southern and east-
ern sectors of the basin (Whitehead et al. 1986); 
ii) distribution contraction of cold-water affinity 
species in the northern areas such as the sprat 
Sprattus sprattus (Margonski et al. 2010), whose 
populations have drastically declined since the 
1990s in the northern Adriatic and the Gulf of Lion 
(Lloret et al. 2001; Grbec et al. 2002; Hidalgo et al. 

2020), and finally iii) west-eastward expansion of 
non-indigenous warm-adapted species of tropical 
origin, which are expanding their presence in the 
Mediterranean (Raitsos et al. 2010; Azzurro and 
Bariche 2017; Azzurro et al. 2019), for instance the 
case of the rabbitfish Siganus luridus and S. rivula-
tus, which are rapidly expanding their distribution 
and increase in abundance at the expense of their 
native counterpart Sarpa salpa (Marras et al. 2015) 
(Sections 2.5.1 and 4.1.1).

6.10.2 Management approaches, 
governance, and adaptation for ocean 
warming
Monitoring marine heat waves leads to a better 
understanding of their development, drivers and 
characteristics. Monitoring of near-time sea-sur-
face temperature based on satellite data is possi-
ble, while the use of oceanographic arrays could 
provide information about heat penetration in 
deeper ocean layers. In the Mediterranean Sea, 
“T-MEDNet” was created in 2010 to develop an 
observation network on climate change effects 
and to spread standard monitoring protocols on 
seawater temperature and biological indicators. 
To date, continuous, quality checked tempera-
ture series are available at >70 sites and different 
ocean depths (5 to 40 m; T-MedNet 2019). They 
also evaluate satellite-derived sea-surface tem-
peratures to track Mediterranean marine heat 
waves in near real-time.
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Ocean acidification acts together with other global 
changes (e.g., warming, seawater expansion) and 
with local changes (e.g., pollution, eutrophication) 
(Section 2.2.9). These simultaneous pressures and 
stresses lead to interactive, complex and ampli-
fied impacts for species and ecosystems (Section 
4.1.1.1). Globally, a pH change of -0.08 has oc-
curred, on average, in the acidity of the oceans 
since the industrial age began (Section 2.2.9.1), i.e. 
a 30% increase in acidity. If we continue on our 
present course, this will lead to a -0.46 increase 
by the end of the century (Section 2.2.9.2), repre-
senting a 5-fold increase in acidity (Kolbert 2014). 
The term “ocean(s)” here is inclusive, encompass-
ing marine and brackish water systems, from the 
open ocean to coastal waters, with the latter re-
flecting the immediate interface of land activities 
affecting the ocean, which has numerous implica-
tions for both eutrophication and acidification.

One of the issues generally underlined regard-
ing research, and management to some extent, 
is the problem of ocean acidification being over-
shadowed by other more immediate, tangible and 
high-profile issues affecting the marine environ-
ment, such as marine litter (Tiller et al. 2019) (Sec-
tion 2.3.2.3). This is also true in the Mediterranean 
region where the marine plastic and marine litter 
issue is quite acute and where there are tangible 
and significant effects on economic well-being 
(i.e., tourism), health and well-being (Portman 
and Brennan 2017; Portman et al. 2019).

It is difficult to carry out long-term realistic ma-
nipulations of CO2 levels, and therefore scientists 
have used areas with naturally occurring high CO2 
levels to forecast the effects of ocean acidification. 
In an elaborate census offshore of Naples, Italy, di-
vers collected data around deep-sea volcanic vents 
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to find out which species, habitats and processes 
are resilient to and/or adversely affected by ocean 
acidification. At several hundred meters from the 
vents, scientists observed seaweeds of different 
types, sea cucumbers and urchins (by counting 
both sedentary flora and fauna and observing the 
movements of creatures). Closer to the vents, they 
observed that the number of species dropped. As 
pH levels dropped in proximity to the vents (indi-
cating higher acidity), macroalgal habitats were 
found to be significantly altered. Also, mollusks or 
limpets, which came close to the vents, exhibited 
dissolved shells (e.g., with holes in them) (Porzio 
et al. 2011). Similar work has also been carried 
out more recently at Mediterranean sea vents by 
Vizzini et al. (2019).

With regard to close-to-shore systems, there are 
high levels of uncertainty about how coastal eco-
systems will be affected by rapid ocean acidifica-
tion caused by anthropogenic CO2, due to a lack 
of data. However, further study is needed to in-
vestigate whether the observed response of mac-
roalgal communities can be replicated in different 
seasons and from a range of geographical regions 
for incorporation into global modelling studies to 
predict the effects of CO2 emissions on the Earth's 
ecosystems (Porzio et al. 2011).

6.11.1 Future risk of ocean acidification

On a global level, not specific to the Mediterra-
nean, some effects of CO2 absorption can be ex-
plored by researching conditions with lower pH 
(representing greater acidity) in waters near hy-
drothermal vents (Portman 2016). Hall-Spencer et 
al. (2008) found that typical rocky shore communi-
ties with abundant calcareous organisms shifted 
to communities lacking scleractinian corals with 
significant reductions in sea urchin and coralline 
algal abundance. To our knowledge, this is the 
first ecosystem-scale validation of predictions 
that these important groups of organisms are 
susceptible to elevated amounts of pCO2. Sea-
grass production was highest in an area at mean 
pH 7.6 (1,827 μatm pCO2) where coralline algal bi-
omass was significantly reduced and gastropod 
shells were dissolving due to periods of carbonate 
sub-saturation.

Some work in the Mediterranean region has trans-
lated expected changes in ocean chemistry into 
impacts, first on marine and coastal ecosystems 
and then, through effects on services provided by 
these ecosystems to humans, into socio-econom-
ic costs using economic market and non-market 
valuation techniques (Rodrigues et al. 2013; Peled 

et al. 2018). Initial evaluations suggest that the 
important sectors affected are tourism and rec-
reation, red coral extraction, and fisheries (both 
capture and aquaculture production) (Rodrigues 
et al. 2013) (Section 4.1.2.1).

One way to assess the future impacts of ocean 
acidification, especially socio-economic impacts, 
is through the assessment of ecosystem services. 
A number of general studies have looked at the 
effects of climate change including acidification. 
This includes studies by Canu et al. (2015) for the 
general Mediterranean and by Peled et al. (2018) 
for the eastern Mediterranean in particular. The 
advantage to such approaches is that they esti-
mate the monetary value of maintaining elements 
of the environment that have the potential to re-
duce acidification. The problem is incorporating 
these approaches into policy so that there is prac-
tical application (Portman, 2013).

One of the most harmful effects of acidification 
will be on fisheries, which are increasingly im-
portant and threatened in the Mediterranean Sea. 
Lacoue-Labarthe et al. (2016) contend that ocean 
acidification should therefore be factored into fish-
eries and aquaculture management plans (Section 
4.1.3.4). Recruitment and seed production present 
possible bottlenecks for shellfish aquaculture in 
the future since early life stages are vulnerable to 
acidification and warming. Although adult finfish 
seem able to withstand the projected increases in 
seawater CO2, degradation of seabed habitats and 
increases in harmful blooms of algae and jellyfish 
might adversely affect fish stocks (Lacoue-La-
barthe et al. 2016).

6.11.2 Management approaches, 
governance, and adaptation for ocean 
acidification
One approach that has been applied to encour-
age actions that will counter acidification is that 
of ecosystem services assessment. This approach 
aims to encourage action by evaluating the costs of 
inaction. Peled et al. (2018) did such an evaluation 
for the Israeli Exclusive Economic Zone. One ad-
vantage to their approach is that they account for 
permanent and temporary carbon sequestration 
and the use of Social Cost of Carbon (SCC) values. 
Overall, they find that within the context of ecosys-
tem services, the biological component within the 
oceanic carbon cycle acts as a sink, which in its 
hypothetical absence would cause higher levels of 
CO2 outgassing back to the atmosphere, potential-
ly leading to greater acidification once gases are 
reabsorbed (Peled et al. 2018) (Section 4.2.2.2).
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Kelly et al. (2011) posit that ocean acidification can 
be curbed by focusing more attention on local and 
regional actions within terrestrial watersheds. 
Ramajo et al. (2019) and others have suggested 
that seagrasses may provide “refugia” from ocean 

acidification for associated calcifying organisms, 
as their photosynthetic activity may raise pH above 
the thresholds for impacts on calcification and/
or limit the time spent below some critical pH 
threshold.
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6.12.1 Future risks associated with non-
indigenous species

Non-indigenous species may be a significant threat 
to biodiversity, economies and human health glob-
ally (Early et al. 2016; Tobin 2018) (Section 2.5). Cli-
mate change and projected climate-driven biome 
and thermal niche shifts, along with increases in 
trade and mobility, are the main drivers of non-in-
digenous species expansion globally (Early et al. 
2016) and in the Mediterranean.

Today, the highest numbers of non-indigenous 
species have been recorded in high Human De-
velopment Index (HDI) and economically devel-
oped countries, which are also able to collect the 
most information and mobilize the best efforts to 
manage them (Early et al. 2016). Studies show 
that countries which are the biggest agricultural 
producers (such as China and the United States) 
could be the main potential sources of non-indig-
enous species and experience the largest nega-
tive impacts from future non-indigenous species 
introductions (Paini et al. 2016).

Future trends in geographical distributions of 
non-indigenous species intrusions are likely to 
differ considerably from current patterns (Sec-
tion 2.5.1.3) (Early et al. 2016). Although the level 
of non-indigenous species will remain high in 
developed countries in the coming decades, they 
will increase substantially in developing countries 
where biodiversity may be high but capacity to 
manage non-indigenous species is low. Devel-
oping countries, especially Sub-Saharan African 
countries, could be the most vulnerable to non-in-
digenous species expansion (Paini et al. 2016). In 
such places, non-indigenous species will increas-
ingly threaten human livelihoods.

Water-borne infectious diseases are strongly as-
sociated with freshwater non-indigenous species 
that are linked to changes in environmental condi-
tions produced by climate change (Sections 5.2.3.3 
and 5.2.3.4). Some pathogens including West Nile 
Virus, dengue, yellow fever virus, chikungunya 

fever virus, malaria sporozoan protists, filariasis 
and dirofilariasis nematodes, require aquatic ar-
thropod vectors that are extending their range due 
to climate changes, at least on the northern rim of 
the Mediterranean (Section 5.2.5.4).

The number of non-indigenous plants (Doblas- 
Miranda et al. 2017) in the Mediterranean Basin 
seems to be lower than in other European regions 
(Vilà et al. 2007; Gassó et al. 2012), probably due to 
environmental constraints, the long history of an-
thropogenic disturbances and the lower economic 
development of the region until recently (Castri et 
al. 1990; Vilà and Pujadas 2001). With regard to 
non-indigenous, the first vertebrates established 
in the Mediterranean Basin date back from the 
Neolithic period, although there has been an ex-
traordinary increase in the rate of introduction of 
non-indigenous species since 1850 and especially 
in recent decades (Genovesi et al. 2009). Establish-
ment success seems to be higher than in other 
Mediterranean-type climate regions of the world, 
at least for birds (Kark and Sol 2005). However, 
information related to non-native terrestrial inver-
tebrates is largely unknown (Roques et al. 2009).

Introduction patterns of non-indigenous species 
differ considerably amongst groups, although they 
tend to mostly occupy anthropogenically modified 
habitats (Section 2.5.2.1), while contrary to other 
regions of the world, natural and semi-natural 
woody habitats are relatively resistant to non-in-
digenous species (Vilà et al. 2007; Kark et al. 2009; 
Roques et al. 2009; Arianoutsou et al. 2010). As 
in other regions of the world, the increase in the 
establishment of non-indigenous species in the 
Mediterranean Basin will continue due to the in-
creasing rate of transport of goods and people. 
Delays in the management response therefore 
suggest that non-indigenous species will become 
of even greater concern in the future. Currently, 
the information available on non-indigenous spe-
cies in the Basin is not complete and the num-
ber of non-indigenous species across taxonomic 
groups is underestimated (DAISIE 2009). Detailed 
information on their distribution and ecological 
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impacts is necessary to accurately determine the 
current status of non-indigenous species in the 
Mediterranean region.

The ecological and economic consequences of 
non-indigenous species introductions in terres-
trial ecosystems of the Mediterranean Basin are 
beginning to emerge. Non-indigenous plants com-
pete with indigenous species, decreasing local di-
versity and changing community composition (Vilà 
et al. 2006). Changes in ecosystem functioning 
have been less explored but include alterations in 
decomposition rates (Castro-Díez et al. 2009) and 
changes in soil carbon and nitrogen pools (Vilà et 
al. 2006). Even though the number of successful 
non-indigenous species seems to be higher in 
plants, the impacts of non-indigenous animals are 
not of lower magnitude. The presence of non-in-
digenous vertebrates poses severe threats to na-
tive biodiversity through competition for resources, 
predation and hybridization with native species, 
and economic impacts mainly through crop dam-
age (Genovesi et al. 2009). Besides the lack of 
knowledge on the number of non-indigenous ter-
restrial invertebrates present in the Mediterrane-
an Basin, most species established in Europe are 
known to be potential pests for agriculture and for-
estry products, while around 7% affect human and 
animal health (Roques et al. 2009). Their ecologi-
cal consequences have received minor attention, 
although certain non-indigenous insect predators, 
such as Linepithema humile or Harmonia axyridis, 
are known to have a dramatic effect on native in-
vertebrate communities (Angulo et al. 2011; Roy et 
al. 2011a, 2011b).

The Mediterranean Sea has a long history of an-
thropogenic activity and introduction of non-indig-
enous species and currently has a large number 
of them (Section 2.5.1). In recent years, the expan-
sion of non-indigenous thermophilic species (that 
originally began started to enter the Mediterra-
nean from the Indo-Pacific region during the 20th 
century) has been linked to climate-driven hydro-
graphic changes. In the Mediterranean, non-in-
digenous thermophilic biota used to be restricted 
to the Levantine Basin, but are now found in the 
central and western basins (Occhipinti-Ambrogi 
and Galil 2010). The speed at which non-indige-
nous species are spreading in the Mediterranean 
Sea due to climate change is much faster than the 
actual increase in temperature, which is a great 
threat jeopardizing the future of biodiversity in the 
Mediterranean Sea (Raitsos et al. 2010).

Biodiversity hotspots are highly vulnerable to 
non-indigenous species given that many of the 

nations that harbor them have low management 
capacity (Early et al. 2016). This is likely to be the 
case in eastern Mediterranean countries that have 
experienced a 150% increase in the mean annual 
rate of species introductions since 1924. Studies 
of long-term data since 1924 of 149 warm-water 
non-indigenous species in the Mediterranean Sea 
show that the Lessepsian introductions has been 
amplified by the warming of the eastern Mediter-
ranean Sea (Raitsos et al. 2010).

The freshwater ecosystems of the Mediterranean 
Basin are considered a biodiversity hotspot with a 
high level of endemism and small natural ranges 
of native fish vulnerable to extinction (Ribeiro and 
Leunda 2012). Aquatic non-indigenous species 
have the potential to cause cascading disruption 
in entire food webs, cause biodiversity loss and do 
economic harm (Thomaz et al. 2014). The spread-
ing of non-indigenous species in Iberian Penin-
sula freshwater rivers is a potent threat to native 
freshwater populations. Studies in the southwest-
ern Iberian Peninsula freshwater rivers show that 
the quantities of non-indigenous species were the 
best forecaster of the decline of native fish species 
(Hermoso et al. 2011). In addition, the risk of exot-
ic pathogens is threatening European Mediterra-
nean countries through a continued introduction 
of non-indigenous disease vectors and changing 
climate and environments (Medlock et al. 2012) 
(Section 2.5.2.3).

6.12.2 Management approaches, 
governance, and adaptation for non-
indigenous species
Patterns of introduction, magnitude and expan-
sion of non-indigenous species are currently at 
the most rapid rate of change ever recorded in 
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Table 6.1 | Overview of stages of non-indigenous 
species introduction and potential management 
strategies (based on Lockwood et al. 2007; Tobin 2018).

STAGE OF 
INTRODUCTION STRATEGY

ARRIVAL
• Risk Analysis
• International Standards
• Inspection

ESTABLISHMENT • Detection
• Eradication

SPREAD • Quarantine
• Barrier Zone

IMPACT • Suppression
• Adaptation
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human history (Early et al. 2016). Only a minority 
of non-indigenous species succeed in establish-
ing in their new locations and become a threat 
but those that do can result in billions of dollars 
in costs (Tobin 2018). As a result, management 
strategies continue to be an important element 
in global discussions on non-indigenous spe-
cies. Central to best practice efforts in develop-
ing and implementing management frameworks 
is assessing the introduction stage of the species 
being addressed to identify the appropriate strat-
egy (Table 6.1).

6.12.3 Innovation

Effective management strategies often involve 
preventing the arrival of non-indigenous species 
from the onset. Advances in risk analysis have led 

to refined estimates of likely introduction path-
ways and the time at which the pathway is most 
likely to result in successful establishment (Gray 
2016). This has led to more optimized allocation 
of limited inspection resources. Other advances 
in risk analysis include use of new technologies 
for detection and surveillance of non-indigenous 
species such as eDNA (Valentin et al. 2018) and 
utilizing bioeconomic models to formally consider 
ecological and economic links and dynamics that 
allow us to assess the costs of different manage-
ment strategies (Lodge et al. 2016; Epanchin-Niell 
2017). Finally, models of non-indigenous species 
distribution developed on their biological charac-
teristics and climate suitability can potentially be 
used to predict susceptible areas (Mainali et al. 
2015; Barbet-Massin et al. 2018).
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The previous sections present the risks of the main 
hazards in the Mediterranean region, which are 
expected to increase in the future due to chang-
es in environmental and societal conditions. Each 
section analyzes these hazards in isolation, with-
out considering potential interactions. However, 
when two or more hazards occur at the same time, 
for example heavy precipitation coinciding with 
storm surge flooding, potential impacts increase 
due to compounding effects (Zscheischler et al. 
2018), even in cases when none of the individual 
events is extreme. Also, cascading effects of haz-
ards occurring in succession and overlapping tem-
porally or spatially (de Ruiter et al. 2020), such as 
heavy precipitation triggering landslides, can lead 
to increased impacts (Gallina et al. 2016; Terzi et 
al. 2019). To cope with the impacts of compound 
and consecutive events, a holistic approach to fu-
ture risk is needed that considers the interaction 
between hazards and identifies management and 
adaptation practices that can be successful in cop-
ing with a wide range of hazards. Such approaches 
build socio-ecological resilience, preparing society 
for future environmental change in a sustainable 
manner.

A large number of the management and adapta-
tion measures discussed for a single hazard or 
sector present synergies with other hazards or 
sectors. For instance, the implementation of green 
roofs against heat stress (Section 6.2.2) additionally 
increases infiltration during flood events. Similarly, 

managing agricultural drought by using agrofor-
estry systems (Section 6.4.2) increases shade thus 
decreasing heat stress, decreases soil erosion due 
to a deeper penetration of roots, and has a positive 
effect on the water balance, which can counter-
act water scarcity. However, some strategies can 
lead to trade-offs with other hazards or sectors. 
While Ecosystem-based Adaptation (EbA) can be a 
successful strategy against sea-level rise-related 
hazards (Section 6.9.2) and can, at the same time, 
provide health benefits to the population, EbA 
measures have high space needs and are there-
fore only applicable to a limited degree in urban 
locations (Temmerman et al. 2013). Another exam-
ple is the use of desalination plants for managing 
water scarcity (Section 6.4.2), which can lead to 
severe soil contamination. Examples of potential 
synergies and tradeoffs between adaptation meas-
ures are presented in Table 6.2.

The majority of strategies discussed above have 
positive effects on mitigation. Water-sensitive 
urban design (WSUD), sustainable land man-
agement and EbA, and other strategies have the 
potential to enhance CO2 sequestration due to an 
increase in biomass. Such primarily nature-based 
strategies manage and protect ecosystems and 
their functions. Nature-based solutions can in-
crease socio-ecological resilience in a wide range 
of contexts as these strategies, along with the con-
cept of ecosystem services, further help to raise 
awareness regarding the importance of ecosys-

 6.13    Interactions of hazards, synergies and trade-offs between adaptation 
strategies and mitigation
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Table 6.2 | Selected adaptation strategies discussed in this chapter grouped by type of strategy, along with syner-
gies and/or trade-offs with other hazards/sectors, and climate mitigation.

ADAPTATION STRATEGY HAZARDS: SYNERGIES (+) & 
TRADE-OFFS (-)

SYNERGIES (+) & TRADE-OFFS (-) 
WITH MITIGATION

URBAN PLANNING

Green roofs
+ Reduces heat stress
+  Increases infiltration during floods
+ Health benefits

+  Increases CO2 sequestration in  
biomass

Increase in canopy cover in cities + Reduces heat stress
+  Increases infiltration during floods

+  Increases CO2 sequestration in  
biomass

Water-sensitive urban design 
(WSUD), e.g., retention pools

+ Counteracts water scarcity
+ Counteracts salt water intrusion
+ Counteracts soil erosion
+  Increases infiltration during floods

+  Increases CO2 sequestration due to 
more open/green space

Hard protection, e.g., sea walls
+  Protects from sea-level rise impacts
- Potential increase in river/pluvial flood 

risk due to damming effects
-  Energy intensive production

NATURE-BASED SOLUTIONS

Conservation agriculture + Counteracts agricultural drought
+ Reduces soil erosion +  Increases CO2 sequestration in soils

Agroforestry systems

+ Counteracts agricultural drought
+ Shade reduces heat stress
+  Deeper penetration of roots 

counteracts soil erosion
+ Positive effect on water balance

+  Increases CO2 sequestration in  
biomass

Sustainable land management, e.g., 
green cover

+  Counteracts soil erosion and 
desertification

+  Increases infiltration during floods
+ Increases water storage capacity

+  Increases CO2 sequestration in  
biomass

Prescribed fire techniques
+  Reduce wildfire risk
-  Difficult to implement due to high 

amount of private property

+  Avoid large wildfires and so increase 
CO2 sequestration potential in biomass

Reforestation in upstream areas
+  Reduces river flooding
+ Reduces soil erosion
-  Increases fuel biomass for wildfires

+  Increases CO2 sequestration in  
biomass

Ecosystem-based Adaptation (EbA)

+  Protects from sea-level rise impacts
+ Health benefits
-  High space needs: applicable in 

selected locations only

+  Increases CO2 sequestration in  
biomass

ENGINEERED SOLUTIONS

Desalination of sea water +  Counteracts water scarcity
- Soil contamination -  Energy intensive process

PUBLIC OUTREACH

Early warning systems (EWS), e.g., 
the European Flood Awareness 
System EFAS

+  Warn against multiple hazards, 
especially extremes, e.g., wildfires, 
coastal and river flooding, heat stress

Awareness raising through ecosystem 
service assessment

+  Potential to reduce ocean acidification
+ Increases EbA via ecosystem 

conservation

-  Increases CO2 sequestration in  
biomass (if ecosystems conserved)
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tems as an adaptation strategy, with positive ef-
fects on human well-being (Keesstra et al. 2018; 
Seddon et al. 2019). On the other hand, a number 
of adaptation strategies are energy-intensive and 
their implementation may lead to an increase in 
greenhouse gas emissions. Examples are the use 
of desalination plants or the construction of hard 
protection measures against sea-level rise.

The potential synergies and trade-offs of adap-
tation strategies with mitigation illustrate the 
importance of developing integrated policies for 
responding to future risks that incorporate adap-
tation and mitigation strategies (Section 5.1.3.1). 
This would allow synergies to be harnessed more 
strategically while, at the same time, avoiding po-
tential trade-offs between mitigation and adapta-
tion practices. In a study assessing adaptation and 
mitigation plans in European cities, Reckien et al. 
(2018) found that only a few Mediterranean cities 
have local climate plans that consider both miti-
gation and adaptation in a joint manner. These cit-
ies were primarily located in France, with a small 
number of cities in Spain. In most other European 
Mediterranean countries, the majority of cities 
have climate plans for mitigation only, very few for 
adaptation only, and some do not have any climate 
plans at all. Assuming that this finding can be 
transferred to southern and eastern Mediterrane-
an countries, there is an urgent need for such local 
climate plans. Cities, in particular, need to become 
more resilient to environmental change as impacts 
will be disproportionally high in these locations 
due to the concentration of population and assets 
in combination with hazard-amplifying conditions 
(e.g., increased run-off through soil sealing, urban 
heat island effect (Rosenzweig et al. 2010).

A number of region-wide concerns and needs are 
raised across the chapter that, if addressed, can 
promote socio-ecological resilience and sustain-
able development in the entire region. Long-term 
monitoring data are missing in many parts of the 
basin, with particularly large differences in mon-
itoring and reporting schemes between northern 
(EU), eastern, and southern countries of the re-
gion. There is also a need for advancing (climate) 
modeling techniques such as the representation of 
small river catchments, the short-term prediction 
of extreme events (e.g., heat, flooding), and im-
provements in seasonal forecasts. Furthermore, 
public participation in the development and imple-
mentation of management and adaptation strate-
gies is important for their success. Stakeholders 
need to be involved in this process right from the 
start to increase local relevance and acceptance 
of the proposed strategies, thus facilitating imple-

mentation. Sharing and including local knowledge 
in the process is of prime importance in building a 
resilient society in a sustainable manner (Oppen-
heimer et al. 2019). Low-effort and low-cost strat-
egies, e.g., promoting household-level adaptation, 
can play an important role in increasing resilience 
and coping with risk in the near future (Koerth et 
al. 2013b, 2013a).

Although national and local strategies are essen-
tial and successful in coping with risk and in in-
creasing resilience, integrated management and 
adaptation approaches that treat multiple hazards 
in a holistic manner are required to address the 
above-stated concerns. Such approaches can 
be initiated in a top-down manner through re-
gion-wide policies such as the Barcelona Conven-
tion. The Barcelona Convention for the Protection 
of the Marine Environment and the Coastal Region 
of the Mediterranean, established in 1976, provides 
a suitable basis for devising Mediterranean-wide 
policies. It was updated in 1995 and sets the basis 
for the Mediterranean Action Plan that is part of 
the UNEP Regional Seas Programme. One of its 
goals is to promote integrated management of the 
Mediterranean coastal zone. Considerable efforts 
have been undertaken in recent years with the 
aim to facilitate basin-wide planning and manage-
ment such as the Protocol on Integrated Coastal 
Zone Management in the Mediterranean (UNEP/
MAP/PAP 2008), the Mediterranean Strategy for 
Sustainable Development 2016-2025 (UNEP/MAP 
2016) and the Regional Climate Change Adapta-
tion Framework for the Mediterranean Marine and 
Coastal Areas (UNEP/MAP 2017) (Section 5.1.1.2). 
These policy documents explicitly state the need 
for developing climate-resilient cities, acknowl-
edging the importance of ecosystems for climate 
adaptation and mitigation, and enhancing regional 
and cross-border cooperation to promote sus-
tainable development in the region (Benoit and 
Comeau 2005; UNEP/MAP 2012, 2016, 2017).

Active participation in regional-to-global initiatives 
and networks concerned with building socio-eco-
logical resilience can be an additional important 
step forward. The "C40 Cities" network is con-
cerned with achieving the goals of the Paris Agree-
ment and currently has six members from the 
Mediterranean region (Barcelona, Rome, Venice, 
Athens, Istanbul, Tel Aviv). The "100 Resilient Cit-
ies" network aims to increase cities’ resilience to a 
wide range of hazards, including drought, extreme 
heat, sea-level rise, but also other societal chal-
lenges such as corruption, demographic change, 
and poverty. Currently, ten Mediterranean cities 
are part of the network, including six from the 
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northern Mediterranean and four from the South 
and East. Such initiatives can foster knowledge ex-
change, provide funding for specific projects, and 
promote ambitious action against climate and en-
vironmental change.

Lastly, the transfer of scientific knowledge to poli-
cy-making needs to be facilitated, for instance with 
the help of policy briefs and so-called "resilience 
toolkits" (such as RISC-KIT for coastal resilience51) 
in order to support well-informed decisions. Simi-
larly, knowledge transfer concerning environmen-
tal issues and sustainable development needs to 
be an integral part of the curriculum in primary 
and secondary education, therefore increasing 
awareness and establishing sustainable lifestyles 
as a social norm (Otto et al. 2020).

This chapter illustrates that future risks in the 
Mediterranean region will be determined by haz-
ard characteristics (intensity and frequency) and by 
developments in socio-economic conditions that 
determine a society’s adaptive capacity to cope 
with those hazards. The level of risk will largely de-
pend on how soon and how effectively sustainable 
development is pursued. With the tourism sector 
being a large source of revenue in most parts of 
the region, transforming this sector will be par-
ticularly challenging. War and social unrest pose 
an additional, currently more pressing challenge 
in several countries in the Middle East and North 
Africa. These current developments may lead to a 
widening of the development gap between north-
ern, southern, and eastern countries of the region. 
Therefore, developing joint, region-wide, and inte-
grated management and adaptation approaches 
that treat multiple hazards in a holistic manner is 
of utmost importance for sustainable development 
in the entire region. Nonetheless, no one-size-fits-
all strategy exists, and each measure needs to be 
tailored to the respective local conditions.
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51 www.risckit.eu

http://www.risckit.eu
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Brotons L, Aquilué N, de Cáceres M, Fortin MJ, Fall A 2013 
How Fire History, Fire Suppression Practices and Cli-
mate Change Affect Wildfire Regimes in Mediterranean 
Landscapes. PLoS One 8, e62392.  
doi: 10.1371/journal.pone.0062392
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