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 4 Ecosystems

Executive summary

Marine ecosystems

Despite covering only 0.82% of the ocean’s surface, 
the Mediterranean Sea supports up to 18% of all 
known marine species, with 21% being listed as 
vulnerable and 11% as endangered. The acceler-
ated spread of tropical non-indigenous species is 
leading to the “tropicalization” of Mediterranean 
fauna and flora as a result of warming and extreme 
heat waves since the 1990s. The acidification rate 
in the Mediterranean waters has ranged between 
0.055 and 0.156 pH units since the pre-industrial 
period, affecting the marine trophic chain, from its 
primary producers (i.e., coccolithophores and fo-
raminifera) to corals and coralline red algae.

Projections for high emission scenarios show 
that endemic assemblages will be modified with 
numerous species becoming extinct in the mid 
21st century and changes to the natural habitats of 
commercially valuable species, which would have 
many repercussions on marine ecosystem services 
such as tourism, fisheries, climate regulation, and 
ultimately on human health.

Adaptation strategies to reduce environmental 
change impacts need effective mitigation policies 
and actions. They require anticipatory planning 
to enable them to tackle problems while they 
are still manageable. Given the diversity of each 
Mediterranean sub-basin, wider monitoring 
coverage is needed to strengthen our knowledge 
about the different adaptation processes that 
characterize and best suit each geographical 
zone. Adaptation implies the implementation 
of more sustainable fishing practices as well 
as reducing pollution from agricultural activity, 
sustainable tourism or developing more effective 
waste management. Marine protected areas 
can potentially have an insurance role if they are 
established in locations not particularly vulnerable 
to ocean acidification and climate change.

Coastal ecosystems

The coastal zone, i.e., the area in which the 
interaction between marine systems and the land 
dominate ecological and resource systems, is a 
hotspot of risks, especially in the south-eastern 
Mediterranean region. Alterations to coastal 
ecosystems (lagoons, deltas, salt marshes, etc.) 
due to climate change and human activities affect 

the flow of nutrients to the sea, the magnitude, 
timing and composition of potentially harmful/
toxic plankton blooms. They also significantly 
increase the number and frequency of jellyfish 
outbreaks, and could have negative impacts on 
fisheries. 1.2 to 5% of seagrass meadows in the 
Mediterranean Sea, which represent 5 to 17% of 
the worldwide seagrass habitat, are lost each year. 
Among them, almost half of the surveyed Posidonia 
oceanica sites have suffered net density losses of 
over 20% in 10 years. As for fish, non-indigenous 
species and climate change cause local extinction.

Projected temperature increases combined with 
a decrease in nutrient replenishment and ocean 
acidification, are expected to cause changes in 
plankton communities, negative impacts on fish, 
corals, seagrass meadows and propagation of 
non-indigenous species. Projected sea level rise 
will impact coastal wetlands deltas and lagoons. 
Extensive urbanization added to climate change 
is also expected to threaten coastal ecosystems, 
human health and well-being.

A nexus approach is required when trying to estab-
lish adaptation methods for the entire Mediterra-
nean, while taking into account ecosystem-based 
management, synergies and conflicts, integrating 
local knowledge and institutions. Suitable adapta-
tion policies include reducing pollution runoff, both 
from agriculture and industry and waste manage-
ment, and policies to limit or prevent acidification. 
Conservation planning and management should 
focus on cross-cutting approaches and building 
resilience between structural and functional con-
nectivities of various fields.

Terrestrial ecosystems

Biodiversity changes in the Mediterranean over 
the past 40 years have occurred more quickly and 
been more significant than in other regions of the 
world. Urbanization and the loss of grasslands 
are key factors of ecosystem degradation across 
the region. Since 1990, agricultural abandonment 
has led to a general increase in forest areas 
in the northern Mediterranean, while in the 
southern Mediterranean, ecosystems are still at 
risk of fragmentation or disappearance due to 
human pressure from clearing and cultivation, 
overexploitation of firewood and overgrazing. 
Drylands have significant biodiversity value, with 
many of the plants and animals highly adapted 
to water-limited conditions. They are undergoing 
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an overall increase in response to climate 
change and extensive land abandonment. 48% of 
Mediterranean wetlands were lost between 1970 
and 2013, with 36% of wetland-dependent animals 
in the Mediterranean threatened with extinction. 
Because of the reduction in river flows, 40% of fish 
species in Mediterranean rivers are endangered.
Projections for the 21st century indicate drier 
climate and increased human pressure, with 
negative impacts on terrestrial biodiversity, forest 
productivity, burned areas, freshwater ecosystems 
and agrosystems. Future projections indicate that 
burnt areas can increase across the region by up to 
40% in a 1.5°C warming scenario and up to 100% 
from current levels for 3°C warming at the end of 
the century. Mediterranean drylands will become 
drier and their extent is expected to increase 
across the region. Projections suggest decreased 
hydrological connectivity, increased concentration 
of pollutants during droughts, changes in biological 
communities as a result of harsher environmental 

conditions, and a decrease in biological processes 
such as nutrient uptake, primary production, and 
decomposition.

Promotion of "climate-wise connectivity" through 
permeability of the landscape matrix, dispersal 
corridors and habitat networks are key to facilitating 
upward the migration of lowland species to 
mountains in order to adapt to new climate change 
conditions. Promotion of mixed-species forest 
stands and sylvicultural practices such as thinning, 
and management of understory can promote 
the adaption of Mediterranean forests to climate 
change. Promotion of the spatial heterogeneity of 
the landscape matrix can help reduce fire impacts. 
The preservation of the natural flow variability 
of Mediterranean rivers and streams and wide 
riparian areas, along with reductions in water 
demand are key to the adaptation of freshwater 
ecosystems to future climate change.

4.1.1 Current condition and past trends

4.1.1.1 Observed changes

Despite only covering 0.82% of the ocean surface, 
the Mediterranean Sea supports a high level of 
biodiversity, including about 18% of all known 
marine species (~17,000) (Bianchi and Morri 2000; 
UNEP/MAP-RAC/SPA 2009; Coll et al. 2010). The 
Mediterranean Sea is biologically diverse because 
it is a warm sea at temperate latitudes, and is 
thus home to both temperate and subtropical 
species, and has been further diversified by 
its complex geological history (Bianchi and 
Morri 2000; Merheb et al. 2016). As a result, the 
present marine biota of the Mediterranean is 
composed of species belonging to: (1) temperate 
Atlantic-Mediterranean species; (2) cosmopolitan 
species; (3) endemic elements, comprising both 
paleoendemic (Tethyan origin) and neoendemic 
species (Pliocenic origin); (4) subtropical Atlantic 
species (interglacial remnants); (5) boreal Atlantic 
species (ice-age remnants); (6) Red Sea migrants 
(especially into the Levantine Basin); (7) eastern 
Atlantic migrants (especially into the Alboran Sea) 
(Bianchi and Morri 2000).

In marine ecosystems, specific drivers of envi-
ronmental change include: i) the increasing tem-

perature and salinity of surface waters (Coma et 
al. 2009; Conversi et al. 2010; Calvo et al. 2011) 
and the deep-sea (≥400 m) (Béthoux et al. 1990; 
Rixen et al. 2005; Vargas-Yáñez et al. 2010; Skliris 
et al. 2014; Schroeder et al. 2016), ii) enhanced 
thermal stratification (Powley et al. 2016), which 
can increase eutrophication and O2 consumption 
due to increasing dissolved organic carbon (DOC) 
concentrations in the mixed layer (Ferreira et al. 
2011; Santinelli et al. 2013; Ngatia et al. 2019), and 
iii) decreasing ocean pH fundamentally chang-
ing ocean carbonate chemistry (Calvo et al. 2011; 
The MerMex Group et al. 2011; Flecha et al. 2015; 
Hassoun et al. 2015, 2019; Merlivat et al. 2018). 
Detailed information about these drivers, namely 
temperature and salinity changes, Mediterranean 
hydrology and ocean acidification can be found in 
Sections 2.2.4, 2.2.7.2 and 2.2.9. Risks and vulner-
abilities caused by these drivers are also affected 
by non-climate related anthropogenic stressors, 
such as industrialization, urbanization and agri-
culture, fishing, maritime traffic, harbor activities, 
tourism (Macías et al. 2014; Thiébault et al. 2016) 
and floating plastics and other polymers (Fossi et 
al. 2012, 2018; Suaria et al. 2016). These non-cli-
mate drivers are thoroughly described in Chapters 
2 and 3.1 (Section 3.1.2.3) and can be classified 
as pollution (Section 2.3) and land and sea-use 
changes (Section 2.4).

4.1 Marine ecosystems
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The interconnected effects of climate change 
and several non-climate related drivers, covered 
in Chapter 2, Section 2.6 affect the way the 
Mediterranean marine ecosystem functions at all 
levels, from primary producers to upper trophic-
levels (The MerMex Group et al. 2011; Doney et al. 
2012; IPCC 2014) (Fig. 4.1). Consequences include 
enhanced mortality of key marine habitat species, 
e.g., coralligenous outcrops, maërl beds (Pairaud 
et al. 2014; Molina et al. 2016) and the bivalve 
Pinna nobilis (Vázquez-Luis et al. 2017), as well as 
the increased establishment of new communities 
and disease outbreaks (Rubio-Portillo et al. 2018; 
Berzak et al. 2019). Impacts of warming on marine 
biota not only result from the direct impact of 
increasing temperature on organism physiology, 
but also from the effect of warming on other 
biological (e.g., microbial activity, metabolic rates) 
and abiotic (e.g., oxygen solubility) components of 
ecosystem functions (Vaquer-Sunyer and Duarte 
2013).

Since the mid-1980s, regime shifts in the Medi-
terranean Sea have impacted different ecosystem 
components (e.g., diversity and abundance of zoo-
plankton, abundance of anchovy stocks, frequency 
of harmful algal blooms, mucilage outbreaks), 
possibly due to regional effects of climate modes 
(Section 2.2.2), such as a positive state of the North 
Atlantic Oscillation (NAO) that affects the physical 
properties of the water column (Conversi et al. 
2010; Barausse et al. 2011). The recent study by 
Fortibuoni et al. (2017), while confirming the ex-
istence of some regime shifts, does not support 
the hypothesis of climatic change as a main driver 
for these, and rather points to the impact of local 
pressures, i.e., overexploitation and nutrient loads.

Increasing temperatures are driving the northward 
spread of warm-water species (Sabatés et al. 
2006; Tsikliras 2008; Bianchi et al. 2018), and have 
contributed to the spread of the non-indigenous 
Atlantic coral Oculina patagonia (Serrano et al. 
2013). The recent spread of warm-water species 
that have entered from Red Sea and Atlantic 
Ocean into cooler northern areas is leading to the 
“tropicalization” of Mediterranean fauna (Vergés 
et al. 2014; Bianchi et al. 2018; Galil et al. 2018). 
Non-indigenous species are extensively detailed 
as a driver in Section 2.5. Species that need certain 
temperature ranges cannot migrate further, as 
the different areas in which they usually live and 
span are becoming more and more restricted, 
e.g., the anchovy Engraulis engrasicolus (Sabatés 
et al. 2006). Warming water may also have strong 
effects on deep Mediterranean areas of the two 
zones were cold water is formed, as increasing 

temperature may slow the potential downwelling 
and the provision of oxygen both in the Gulf of Lions 
and in the Adriatic Sea, leaving the cold-water 
coral communities exposed to a certain degree of 
hypoxia (Taviani et al. 2016).

In addition to the general warming patterns, periods 
of extreme temperatures have had large-scale 
and negative consequences for Mediterranean 
marine ecosystems (Sections 2.2.1 and 2.2.2). A link 
between positive thermal anomalies and observed 
invertebrate mass mortalities has been observed 
in the Mediterranean Sea (Rivetti et al. 2014). 
Also, unprecedented mass mortality events, which 
affected at least 25 prominent sessile metazoans, 
occurred during the summers of 1999, 2003, and 
2006 across hundreds of kilometers of coastline in 
the northwest Mediterranean Sea (Cerrano et al. 
2000; Calvo et al. 2011). These events coincided 
with either short periods (2 to 5 days: 2003, 2006) 
of high sea temperatures (27°C) or longer periods 
(30 to 40 days) of less extreme temperatures 
(24°C: 1999) (Crisci et al. 2011). Impacts of these 
events on marine organisms have particularly 
been reported between 0 and 35 m depths, such 
as gorgonian coral mortality (Coma et al. 2009) 
or shoot mortality and flowering of seagrasses 
(Díaz-Almela et al. 2007; Marba and Duarte 
2010). A collaborative database for tracking mass 
mortality events in the Mediterranean Sea has 
been recently launched to support the analysis of 
relationships between thermal conditions and/or 
other environmental drivers (Garrabou et al. 2019), 
and can be helpful for better detecting changes 
across the Mediterranean Basin.

In addition, ocean acidification is an emerging 
human health issue, that also threatens the 
marine realm (Falkenberg et al. 2020) (Section 
2.2.9). Studies of the consequences of ocean 
acidification on marine Mediterranean ecosystems 
report diverse responses (Martin and Gattuso 2009; 
Rodolfo-Metalpa et al. 2010; Movilla et al. 2012; 
Bramanti et al. 2013; Gazeau et al. 2014; Lacoue-
Labarthe et al. 2016). Insights have been gained 
by studying natural CO2 seeps at Mediterranean 
sites such as Ischia and Vulcano in Italy, where 
biodiversity decreases with decreasing pH toward 
the vents, with a notable decline in calcifiers (Hall-
Spencer et al. 2008; Prada et al. 2017). Transplants 
of corals, mollusks, and bryozoans along the 
acidification gradients around seeps reveal a low 
level of vulnerability to CO2 levels expected over 
the next 100 years (Rodolfo-Metalpa et al. 2010, 
2011). However, periods of high temperature 
increase vulnerability to ocean acidification, 
thereby increasing the long-term risk posed to 
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Mediterranean organisms and ecosystems as 
temperatures rise (Gazeau et al. 2014; Lacoue-
Labarthe et al. 2016). Ocean acidification seems 
to have a slower but unstoppable effect on several 
organisms, the increase of temperature being a 
more immediate stress factor in most species 
(Lejeusne et al. 2010). A recent overview (Gao et 
al. 2020) showed that the combination of ocean 
acidification and warming may affect food webs 
from different directions; ocean acidification is 
more likely to follow bottom-up controls (resource 
driven), while temperature drives top–down 
controls (consumer driven).

Key habitats undergoing change

Rapid warming of the Mediterranean Sea, in 
synergy with other climate and non-climate 
related drivers (see Chapter 2), threatens marine 
biodiversity, and particularly some key ecosystems 
that have high vulnerability to such pressures, as 
presented below.

Coralligenous
The coralligenous is a typical Mediterranean un-
derwater seascape, present on hard bottoms from 
~15 to 120 m depths and is mainly produced by 
the accumulation of calcareous encrusting algae 
(Lithophyllum, Lithothamnion, Mesophyllum and 
Peyssonnelia) growing in dim light conditions and 
relatively calm waters (Ballesteros 2006; Boudour-
esque et al. 2015). These outcrops foster one of the 
richest assemblages found in the Mediterranean, 
harboring approximately 10% of Mediterranean 
marine species (Ros et al. 1985; Boudouresque 
2004; Ballesteros 2006; Casas-Güell et al. 2016), 
most of which are long-lived algae and sessile in-
vertebrates (sponges, corals, bryozoans and tuni-
cates) (Garrabou et al. 2002; Ballesteros 2006). The 
different habitats that make up these biogenic for-
mations are mainly determined by light exposure, 
so that some coralligenous habitats can be dom-
inated by calcareous algae and others completely 
dominated by macroinvertebrates with almost no 
algae (Gili et al. 2014; Casas-Güell et al. 2016). Red 
coral, Corallium rubrum, is one of the habitat-form-
ing species that plays a key role in the functioning 
of coralligenous habitats because of its trophic 
activity, biomass and perennial biogenic structure, 
like other Mediterranean gorgonian species (Gili et 
al. 2014; Ponti et al. 2014b, 2016, 2018). Red coral 
is a slow-growing, long-lived species that grows 
in dim light habitats (e.g., caves, vertical cliffs and 
overhangs) between 10 and 200 m depths. De-
spite its essential ecosystemic role, little is known 
about the geographical distribution of red coral up 
to 400 km offshore the coastline due to its large 

bathymetric range and afferent constraints (Ca-
sas-Güell et al. 2015, 2016), and the major studies 
focus on the phytobenthic component (Piazzi et al. 
2009, 2012; Boudouresque et al. 2015). Studies at 
an intermediate scale (tens of km) have been con-
ducted with key species, pinpointing the fact that 
their distribution may be very heterogeneous de-
pending on the environmental factors (Gori et al. 
2012; Coppari et al. 2014, 2016). Due to this lack of 
baseline data, the structure of coralligenous out-
crops is still poorly understood, preventing a prop-
er assessment of its current state of biodiversity 
and the potential impacts of harvesting, and other 
disturbances related to global change, on red cor-
al assemblages. A recent study (Mallo et al. 2019) 
based on historical red coral data from the north 
western Mediterranean Sea, documented the halt 
in the C. rubrum decrease and the first recovery 
response due to effective protection measures in 
some areas.

Coralligenous outcrops are affected by several 
consequences of global change such as nutrient 
enrichment, non-indigenous species, increased 
sedimentation, mechanical impacts, mainly from 
fishing activities, e.g., mechanical injuries and 
sediment re-suspension (Cebrián et al. 2012; 
Piazzi et al. 2012; Gatti et al. 2015), as well as 
sea warming (e.g., massive mortalities related to 
temperature anomalies) and the potential effects 
of ocean acidification (Bramanti et al. 2013; 
Cerrano et al. 2013; Gili et al. 2014). Recently, 
potential synergies between these stressors 
have been hypothesized (Section 2.6), especially 
in shallow areas were heat waves may have a 
large impact on several organisms (Galli et al. 
2017), resulting in a fragmentation of the habitat 
that can open new space for non-indigenous 
species (Vezzulli et al. 2013). It has also been 
demonstrated that a decrease in the abundance 
of coralligenous habitat-forming species leads to 
a rapid fragmentation in community structure and 
a loss of species benefiting from the structural 
complexity these species provide (Ponti et al. 
2014b; di Camillo and Cerrano 2015; Valls et al. 
2015).

In addition to marine heat waves (Garrabou et al. 
2001, 2009), one of the main past threats for the 
red coral Corallium rubrum has been intensive 
harvesting (see Section 2.4), which has caused an 
overall shift in population structure, resulting in a 
decrease in both biomass and colony size (Tsounis 
et al. 2010; Bramanti et al. 2014; Montero-Serra et 
al. 2015). Moreover, its Mg-calcite skeleton makes 
it vulnerable to ocean acidification (Bramanti et 
al. 2015). Bramanti et al. (2013) experimentally 
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evaluated the effects of low pH on C. rubrum over a 
314-day period under two pH levels (8.10 and 7.81). 
This study concludes that exposure to lower pH 
conditions negatively affected skeletal growth and 
spicule morphology (i.e., abnormal shapes).

Mediterranean gorgonian “forests” (e.g., Para-
muricea clavata, Eunicella cavolinii) are threatened 
by several human activities and are affected by 
climatic anomalies that have led to mass mortality 
events in recent decades (Ponti et al. 2014b, 2018; 
Verdura et al. 2019). Observed mortality events 
have been linked to temperature-dependent bac-
terial pathogens (Bally and Garrabou 2007). Also, 
diverse responses to thermal stress have been 
shown in gorgonians (Pivotto et al. 2015; Crisci et 
al. 2017). This may condition the future response of 
these species to climate change.

The ecological role of these habitats and the 
possible consequence of their loss are still 
poorly understood. The experimental study of 
Ponti et al. (2014b) reports a significant effect 
of gorgonians (E. cavolinii, and P. clavata) on the 
recruitment of epibenthic organisms and their 
presence mainly limits the growth of erect algae 
and enhances the abundance of encrusting algae 
and sessile invertebrates. This effect could be 
due to microscale modification of hydrodynamics 
and sediment deposition rate by i) a shading 
effect that reduces light intensity, ii) intercepting 
settling propagules, iii) competing for food with 
filter-feeders and/or iv) competing for space by 
producing allelochemicals. Although the biological 
interaction between gorgonians and other species 
deserves further study, changes to the edaphic 
conditions caused by gorgonian forests influences 
the larval settlement and recruitment processes of 
benthic assemblages (Ponti et al. 2014b, 2018).

In addition to the long-term effects of global change 
and its consequences on the Mediterranean 
coralligenous, short-term extreme events may be 
even more devastating than heat waves. Teixidó 
et al. (2013) show how an extreme storm event 
affected the dynamics of benthic coralligenous 
outcrops in the northwestern Mediterranean Sea 
using data acquired before (2006–2008) and after 
the impact (2009–2010) of a major storm. The 
most exposed and impacted site experienced a 
major shift immediately after the storm and over 
the following year. This impact consists of changes 
in the species richness and diversity of benthic 
species such as calcareous algae, sponges, 
anthozoans, bryozoans and tunicates. In this site, 
benthic species recorded a 22% to 58% loss of 
cover on average, with those with fragile forms 

showing cover losses up to 50 to 100%. Small 
patches survived after the storm and began to 
grow slightly during the following year, and the 
sheltered sites showed no significant changes in 
all the studied parameters, indicating no variations 
due to the storm (Teixidó et al. 2013).

Deep sea ecosystems
Although poorly known, deep seafloor ecosystems 
provide services that are vitally important to the 
entire ocean and biosphere, and play a particularly 
major role in climate change mitigation. For 
instance, by storing a large amount of anthropogenic 
CO2 and by absorbing heat accumulated from the 
greenhouse effect, the deep sea Mediterranean 
waters and ecosystems capture large quantities of 
carbon and, as such, slow down the warming of 
surface waters and land (Luna et al. 2012; Palmiéri 
et al. 2015) (Sections 2.2.7 and 2.2.9). Rising 
atmospheric greenhouse gases are affecting water 
column oxygenation, temperature, pH and food 
supply (Section 3.2), with similar impacts on deep-
sea ecosystems (Sweetman et al. 2017). As they 
are deprived of light, deep-sea ecosystems are 
greatly dependent on surface primary production: 
“marine snow” (Gambi et al. 2014). Surface water 
also oxygenates deep-sea environments when they 
sink to form deep and intermediate water masses. 
When surface water is warmer, it does not mix well 
with deep water (Section 2.2.7).

In the Mediterranean, the deep sea covers about 
79% of the Mediterranean Basin, including 
habitats potentially able to deliver multiple 
ecosystem services and numerous resources of 
high economic value (Manea et al. 2020). Despite 
this fact, very few studies address the response of 
deep-sea ecosystems to ongoing climate change 
in this sea. In contrast with most oceans where the 
flux of particulate organic matter to the seafloor is 
likely to decline significantly in response to climate 
change (Sweetman et al. 2017), a study from the 
eastern Mediterranean shows that climate change 
has caused an immediate accumulation of organic 
matter on the deep-sea floor in recent decades 
(Danovaro et al. 2001). This led, together with 
deep-sea warming, to alteration of carbon and 
nitrogen cycles and has had negative effects on 
deep-sea bacteria and benthic fauna (Danovaro 
et al. 2001, 2004). For instance, the observed 
salinity and temperature changes in eastern 
Mediterranean deep and bottom waters from 1987 
to 1994 (Roether et al. 1996; Theocharis et al. 2002) 
led to the uplift of these water masses by several 
hundred meters, reaching shallower depths (100–
150 m; i.e., close to the euphotic zone) under the 
influence of cyclonic circulation. This resulted 
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in increased biological production and therefore 
enhanced flux of organic carbon to the deep sea, 
thereby significantly and quickly changing the 
way deep-sea ecosystems function (Psarra et al. 
2000; Danovaro et al. 2001). The review of Yasuhara 
and Danovaro (2016) on temperature impacts 
on deep-sea Mediterranean biodiversity shows 
that minor temperature shifts of around 0.1°C or 
less are sufficient to cause significant changes in 
biodiversity and the community structure of deep-
sea nematode assemblages.

Planktonic ecosystems
Several studies have addressed the possible 
impact of climate change on marine phytoplankton 
diversity and distribution in the Mediterranean Sea, 
highlighting highly contrasting regional patterns 
(Duarte et al. 2000; Goffart et al. 2002; Marty et al. 
2002; Bosc et al. 2004; Ribera d’Alcalà et al. 2004; 
Marty and Chiavérini 2010; Herrmann et al. 2014; 
Oviedo et al. 2015; D’Amario et al. 2017). Some 
studies from the northwestern Mediterranean have 
reported a positive trend in phytoplankton biomass 
in response to the expansion of the summer 
stratification. This trend was accompanied by 
an increase in picoplankton and nanoflagellates 
(i.e., small-sized phytoplankton) and a decline in 
diatoms, which are responsible for new production 
(Goffart et al. 2002; Marty et al. 2002; Mena et 
al. 2019; Ramírez-Romero et al. 2020). However, 
other studies report that the spring bloom in many 
Mediterranean regions tends to occur earlier in the 
year, possibly in relation to earlier water warming 
and high irradiance, in contrast with the autumn 
bloom that tends to disappear because of a longer 
stratification period (Bosc et al. 2004). Bosc et al. 
(2004) also reveal significant interannual variations 
in biomass and primary production, not only in the 
northwestern basin (e.g., the exceptional bloom 
in spring 1999), but also, and more surprisingly, 
in the oligotrophic waters of the eastern basin 
(e.g., the 9% decrease in primary production from 
2000 to 2001). In this latter basin, phytoplankton 
shifts seem to be concurrent with rising winter 
precipitation and sea surface temperature (Mena 
et al. 2019) (Section 2.2.4, 2.2.5 and 2.2.7).

In some Mediterranean settings, such as the 
central Ligurian Sea, increased deep-water 
convection (as deep as 2,000 m) has been attributed 
to greater surface salinity causing increased 
nutrient supply near the surface, and thus more 
primary production (Marty and Chiavérini 2010). 
In contrast, in the productive northwestern 
Mediterranean Sea, deep convection could 
significantly decrease under the influence of 
climate change (Herrmann et al. 2014), impacting 

pelagic planktonic ecosystem, which are strongly 
influenced by these hydrodynamics. The weakening 
of deep convection and surface warming modifies 
the pelagic planktonic ecosystem and associated 
carbon cycle indirectly only: the spring bloom 
occurs one month earlier, and the bottom up 
control of phytoplankton development and bacteria 
growth by nitrogen and phosphorus availability 
strengthens, and the microbial loop intensifies 
as the small-sized plankton biomass increases 
(Herrmann et al. 2014). Net carbon fixation and 
deep export do not change significantly. In the 
Tyrrhenian Sea, Ribera d’Alcalà et al. (2004) explain 
the significant changes in the long-term patterns 
of rare copepod species as a symptom of large-
scale meteorological phenomena of the North 
Atlantic sector.

In the NW Mediterranean Sea, decadal climatic 
oscillations linked to the NAO forcing of the pre-
cipitation regime led to an increase in the upper 
salinity in the 1980s and in the late 1990s and 
early 2000s (Chapter 2, Section 2.2.7). In saline 
years, the annual abundance of zooplankton is 
higher than otherwise (Fernández de Puelles and 
Molinero 2007). According to Molinero et al. (2008), 
large-scale climate forcing has altered the local 
environment and the pelagic food-web dynamics 
in the NW Mediterranean Sea through changes 
in biological interactions, competition and pre-
dation. The authors also suggest that warming, 
the dominance of small phytoplankton and pre-
dation pressure by jellyfish negatively affected 
copepod populations (recruitment, life-history 
traits and physiological thresholds) in the early 
1990s, whereas chaetognaths were surpassed 
by jellyplankton as the most frequent copepod 
prey. A more recent study from the same Ligurian 
time-series updated with ten more years (up to 
2003) revealed that the zooplankton, mainly cope-
pods, recovered their initial concentrations after 
2000, suggesting a quasi-decadal cycle (Coma et 
al. 2009). This illustrates the difficulty in identify-
ing long-term changes from decadal oscillation in 
short time-series in plankton. However, surface 
salinity appears to be a common physical indi-
cator of changes in the pelagic ecosystem of the 
NW Mediterranean Sea for jellyfish (Buecher et al. 
1997), crustaceans (García-Comas et al. 2011) and 
phytoplankton (Marty and Chiavérini 2010).

Gallisai et al. (2014) report that aerosol deposition 
from the Sahara may explain 1 to 10% of seasonally 
detrended chlorophyll variability in the nutrient-low 
Mediterranean with main effects in spring over the 
eastern and central Mediterranean, corresponding 
to dust events fueling needed nutrients for the 
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Figure 4.1 | Summary of interactions between large marine vertebrates and marine litter (Galgani et al. 2014). 
Fluxes of litter in the life cycle and intensity of its effects on large marine vertebrates, (a: entanglement; b: ingestion), 
depending on various factors such as ingestion mechanisms (predation, active or passive filter feeding), development 
stage (benthic or pelagic phases for sea turtles), behavior and foraging strategy (feeding on the sea floor, in the water 
column or on the surface, selectivity according to color, shape etc., ecological plasticity in diet and habitat), types of 
litter (micro/macro litter) and types of fishing gear (nets, hooks and lines). The thicker arrows indicate key processes. 
Although trophic transfer from one level to another has been demonstrated in vitro for microplastics in plankton, it 
remains controversial in situ, as most ingested litter is excreted in feces.
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planktonic community (Ternon et al. 2011). The 
areas showing negative effects on chlorophyll 
from dust deposition are regions under significant 
influence from European aerosols. Anthropogenic 
aerosol deposition of nitrate and phosphate largely 
influence primary production in the northern 
Mediterranean Sea (Richon et al. 2018a, 2018b) 
(Section 2.2.3). This response of chlorophyll 
dynamics to dust deposition is important when 
knowing that future scenarios predict increased 
aridity and shallowing of the mixed layer (Gallisai 
et al. 2014) (Section 2.3.2).

From around the island of Lampedusa (central 
Mediterranean), the multi-year evolution of bio-
genic dimethylsulfide (DMS) production in the ma-
rine surface layer and the resulting methanesul-
fonate on the atmosphere are mainly attributed 
to phytoplankton physiology (Becagli et al. 2013). 
High phytoplankton productivity can also be the  
expression of stressed cells, especially during 
summer when high irradiance and the shallow 
depth of the upper mixed layer prevails. This there-
fore leads to higher methanesulfonate concentra-
tions in the atmosphere. These dynamics can be 
further controlled by the North Atlantic Oscillation, 
and related oceanic and atmospheric processes 
(Becagli et al. 2013).

Large vertebrates
One of the biggest threats to large marine verte-
brates is litter debris, such as fishing gear or other 
large items (Galgani et al. 2014) (Fig. 4.1). Regular-
ly, in the Mediterranean Sea and worldwide, large 
vertebrates such as sea birds (van Franeker et al. 
2011), cetaceans (de Stephanis et al. 2013; Notar-
bartolo di Sciara 2014) and marine turtles (Lazar 
and Gračan 2011; Campani et al. 2013; Camedda 
et al. 2014) accidentally swallow micro and mac-
ro-plastic debris that is often found in their di-
gestive tracts. The plastic debris (Section 2.3.2.3) 
affects the marine biota of the Mediterranean at 
macro, micro- and nano-levels.

Sperm whales (Physeter macrocephalus) in the 
Mediterranean Sea, which are believed to be fewer 
than 2,500 mature individuals, are endangered 
world-wide (Notarbartolo di Sciara 2014). A decline 
in sperm whales in the Mediterranean has been 
observed over the last half-century. In addition 
to ingestion of solid debris, other anthropogenic 
activities at sea are suspected to have caused 
the decline of this species and continue to 
threaten its survival in various ways: bycatch, 
collisions with vessels, debilitation by chemical 
pollution, anthropogenic noise, disturbance from 
irresponsible whale watching and most likely 

climate change, and prey depletion (Notarbartolo 
di Sciara 2014). Regarding specifically ingested 
debris, ingestion rates are as high as 31% in some 
marine mammal populations, and sub-lethal 
effects could result in impacts at the population 
level (Baulch and Perry 2014). Campani et al. 
(2013) and Camedda et al. (2014) investigated 
the interaction between loggerhead sea turtles 
(Caretta caretta) and marine litter in the northern 
Tyrrhenian Sea and around Sardinia, respectively. 
In thirty-one C. caretta individuals found stranded 
or accidentally bycaught in northern Tyrrhenian 
Sea, marine debris, mainly plastics, were present 
in 71% of specimens (Campani et al. 2013). In 
Sardinia, only 14% of the 121 monitored turtles had 
debris in their digestive tracts but plastic was the 
main physical category (Fossi et al. 2013; Camedda 
et al. 2014).

Sharks and rays are also seriously threatened 
by anthropogenic pressures, mainly as a result 
of overfishing (Dulvy et al. 2014) (Fig. 4.2), as de-
scribed in Section 2.4.2 in the context of the in-
creasing sea use changes. Some sharks live in 
narrow climatic ranges (Chin et al. 2010), putting 
them at risk in a climate change hotspot such as 
the Mediterranean (Ben Rais Lasram et al. 2010). 
Microplastic (<5 mm) ingestion has been record-
ed in 16.8% of the analyzed specimens of the 
blackmouth catshark Galeus melastomus around 
the Balearic Islands, with higher quantities of  
filament-type microplastics (Alomar and Deudero 
2017). In three striped dolphin populations living  
in the Pelagos Sanctuary (bordered by western  
Italy, southern France and northern Sardinia),  
the highest toxicological stress was from PBT 
(persistent, bioaccumulative and toxic substanc-
es) chemical levels, combined with correlated 
biomarker responses (Fossi et al. 2013). More on 
chemical pollution is covered in Section 2.3. 

Changes in biodiversity

To date, changes in Mediterranean marine biodi-
versity are essentially driven by human activities 
(Mannino et al. 2017), i.e., pollution (Section 2.3), 
sea use changes (Section 2.4.2), the introduction 
of non-indigenous species (Section 2.5), together 
with climate change (Section 2.2) (Lejeusne et al. 
2010; Zenetos et al. 2012; Katsanevakis et al. 2013, 
2014b). In general, the Mediterranean Sea repre-
sents the highest proportion of threatened marine 
habitats in Europe (32%, 15 habitats) with 21% be-
ing listed as vulnerable and 11% as endangered 
(see review in Mannino et al. 2017). This threat in-
cludes several valuable and unique habitats (e.g., 
seagrasses and coralligenous), supporting an 
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extensive repository of biodiversity (Gubbay et al. 
2016).

The shallow depth (on average 1,450 m) of the Med-
iterranean Sea and the relatively fast deep-water 
turnover in comparison to the open ocean, coupled 
with a high degree of endemism (about 20% of  
Mediterranean marine species; Coll et al. (2010)) 

point to a potential amplification of climate change 
impacts. These are expected to cause earlier 
changes in biodiversity in comparison with oth-
er seas, thus making this system a model for  
investigating biodiversity response to direct and 
indirect effects of temperature changes and  
other climate-related and non-related drivers 
(Chapter 2).
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Figure 4.2 | The trajectory and spatial pattern of chondrichthyan (cartilaginous fishes that include sharks, 
skates, rays and chimaeras) fisheries catch landings and fin exports. (A) The landed catch of chondrichthyans 
reported to the United Nations Food and Agriculture Organization from 1950 to 2009 up to the peak in 2003 (dark blue) 
and subsequent decline (orange). (B) The rising contribution of rays to the taxonomically-differentiated global report-
ed landed catch: shark landings (blue), ray landings (dark blue), log ratio [rays/sharks], (orange). Log ratios >0 occur 
when more rays are landed than sharks. The peak catch of taxonomically-differentiated rays peaks at 289,353 tonnes 
in 2003. (C) The main shark and ray fishing nations are gray-shaded according to their percentage share of the total 
average annual chondrichthyan landings reported to the FAO from 1999 to 2009. The relative share of shark and ray fin 
trade exports to Hong Kong in 2010 are represented by fin size. The taxonomically-differentiated proportion excludes 
the ‘nei’ (not elsewhere included) and generic ‘sharks, rays, and chimaeras’ category (adapted from Dulvy et al. 2014).
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Species with low dispersal ability are particularly 
affected by climate change, which may also lead to 
local extinctions, greatly contributing to biodiversi-
ty loss (Mannino et al. 2017). Any change in biodi-
versity may affect ecosystem functioning, even in 
the case of the establishment of a single species 
and may lead to important consequences both for 
nature as well as for society. However, the extreme 
richness of microclimates in the Mediterranean 
(ranging from climate conditions similar to those 
of the Northern Sea in the Adriatic to an almost 
tropical condition in the eastern basin) makes pre-
diction at large spatial scales difficult. Most effects 
of climate change (or climate anomalies) on ma-
rine biodiversity have been so far identified at re-
gional scales (Philippart et al. 2011).

During recent decades, Mediterranean marine 
communities have shown significant changes in 
taxa composition and distribution. In the western 
Mediterranean, climate change is influencing the 
boundaries of biogeographic regions and thus 
warm water marine species are extending their 
ranges and colonizing new regions where they 
were previously absent (Katsanevakis et al. 2014a). 
For instance, mucilages have appeared more fre-
quently (associated with a malfunctioning of the 
microbial loop) in the Adriatic Sea, where it was 
documented for the first time, and in several re-
gions beyond, in recent decades, concomitantly 
with a significant increase in sea surface tempera-
ture (Danovaro et al. 2009). Mucilage is not closely 
associated with the presence of eutrophic condi-
tions, as several mucilage outbreaks have been 
recently observed in oligotrophic seas, such as the 
Aegean Sea (Danovaro et al. 2009). The Ligurian 
Sea, one of the coldest areas of the Mediterranean 
Sea, displays a low number of subtropical species 
and a higher abundance of cold-temperate water 
species. However, the recent warming of Ligurian 
seawater has favored the penetration of warm-wa-
ter species (e.g., Thalassoma pavo), which from 
1985 onward, established large and stable popula-
tions (Parravicini et al. 2015).

Temperature anomalies, even of short duration, 
can dramatically change Mediterranean faunal di-
versity. The largest mass-mortality event recorded 
in the Mediterranean Sea so far occurred in 1999 
along the French and Italian coasts (Cerrano et 
al. 2000; Perez et al. 2000; Garrabou et al. 2001). 
That year was characterized by a summer with a 
positive thermal anomaly that extended the ther-
mocline down to a depth of 40 m (Romano et al. 
2000) and resulted in the extensive mortality of 28 
epibenthic invertebrate species (Fig. 4.3) (Perez et 
al. 2000; Rivetti et al. 2014). Among benthic organ-

isms, sponges and gorgonians were most severe-
ly affected (Cerrano et al. 2000; Perez et al. 2000;  
Romano et al. 2000; Garrabou et al. 2001; Rivetti et 
al. 2014). The shortage of food over several weeks 
is a common phenomenon in the Mediterranean 
Sea due to summer water stratification, but very 
long periods with high temperatures may explain 
such mass mortalities (Rossi et al. 2017a).

In the eastern Mediterranean, the rise of seawa-
ter temperatures may also be partly responsible 
for the entrance of non-indigenous species (Sec-
tion 2.5), mostly from the tropical Indo-Pacific  
(Galil 2000; Por 2009; Zenetos et al. 2012; Rilov 2016). 
The increased introduction and spread of non- 
indigenous species may be a supplementary 
stress factor for native species already weakened 
by climate variations resulting in the dislocation of 
indigenous species’ niches and possibly cascade 
effects on the food webs (Rilov 2016; Corrales et 
al. 2018). Non-indigenous species are a recognized 
threat to diversity and the abundance of native  
species as well as a threat to the ecological sta-
bility of the infested ecosystems. Despite the over-
all tendency towards ocean warming, the east-
ern Mediterranean also experiences occasional 
climate anomalies, for example between 1992 
and 1994, when temperatures dropped by about  
0.4°C (Danovaro et al. 2001). This caused a dras-
tic decrease in nematode abundance and overall  
faunal diversity (e.g., a roughly 50% decrease in 
nematode diversity, Danovaro et al. 2004). After 
1994, when the temperature gradually recovered, 
biodiversity started to reverse to previous condi-
tions but had not recovered fully in 1998 (Danovaro 
et al. 2004).

Sea warming may also have effects on the virulence 
of pathogens, favoring the frequency of epidemio-
logical events, as most pathogens are temperature 
sensitive (Bally and Garrabou 2007; Vezzulli et al. 
2013). Mass mortalities of the gorgonian Para-
municea clavata, scleractinian corals, zoanthids, 
and sponges observed in 1999 in the Ligurian Sea 
were indeed promoted by a temperature shift, in 
conjunction with the growth of opportunistic path-
ogens (including some fungi) (Cerrano et al. 2000).
Increased surface temperatures and altered circu-
lation and precipitation regimes have been evoked 
to explain the increased frequency of bottom water 
hypoxia or anoxia in coastal areas of the northern 
Adriatic. These phenomena, often associated with 
mass mortalities of fish and benthic fauna, alter 
food webs and might have important cascade ef-
fects on biodiversity (Coll et al. 2010). The Adriat-
ic Sea can undergo dramatic change in the lower 
part of its temperature ranges. In winter 2001, the 
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Adriatic Sea experienced a period of abnormally 
low surface temperatures (from 9°C to freezing) 
that led to mass mortalities of sardines (Sardinella 
aurita) (Guidetti et al. 2002), with resulting altera-
tion of the food webs. The Adriatic Basin is also the 
site for deep-water formation, as a result of the 
bora winds associated with decreased tempera-
tures, but recent studies have reported the shift of 

this water formation site towards the Aegean Sea 
by a phenomenon known as eastern-Mediterrane-
an Transient (EMT), related mainly to climatic sea 
and atmosphere conditions (Hassoun et al. 2015). 
EMTs change the salinity distribution with surface 
water freshening linked to enhanced deep-water 
production and in turn to strengthened Mediter-
ranean thermohaline circulation (Incarbona et al. 
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Figure 4.3 | Temperature trends across the Mediterranean Basin. (Temperature trends at 0–10 m (A), 11–30 m (B), 
31–50 m (C) depth layers for the period 1945–2011 in July-November. Linear regressions have been calculated on 
grids of 1° latitude by 1° longitude and tested for statistical significance at the 90% level. Significant increased/de-
creased temperature trends are reported as colored cells, non-significant increased/decreased temperature trends 
are reported as grey areas. Dots show the locations of documented mass mortalities for a depth layer, each color 
represents a single event. The asterisks in the legend of mass mortalities (MM) events refer to the taxa affected: * 
stands for sponges, ** for cnidarians, *** for bryozoans, **** for ascidians, ***** for bivalves (Rivetti et al. 2014).
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2016). This phenomenon can thus affect the ma-
rine biodiversity not only in the Adriatic and Io-
nian Seas but much further, as documented by 
Ouba et al. (2016), who have correlated the sa-
linity variations and increase in total zooplankton 
abundance in Lebanese waters to the activation 
of the Aegean Sea as a major source of dense 
water formation as part of an “eastern Mediter-
ranean Transient-like” event (see Section 2.2.7 
for more details about Mediterranean circulation 
changes).

In response to ocean acidification, calcifying or-
ganisms (planktonic and benthic) such as corals, 
foraminifera, coccolithophores and coralline red 
algae, important contributors of marine calcium 
carbonate production, may be greatly affected 
(Langer et al. 2009; Moy et al. 2009; Bramanti et 
al. 2013; Cerrano et al. 2013; Kroeker et al. 2013). 
Based on experiments, the impact of ocean acid-
ification on Mediterranean corals was examined 
and a significant decrease in calcification rates in 
most tested species was reported (Movilla et al. 
2012, 2014). In the latter study, there was a heter-
ogeneous effect of low pH on the skeletal growth 
rate of the organisms depending on their initial 
weight, suggesting that those specimens with 
high calcification rates may be the most suscep-
tible to the negative effects of acidification. Also, 
a significant effect on benthic foraminiferal com-
munities of low-pH seawaters around the island 
of Ischia (Italy) has been demonstrated as a re-
sult of volcanic gas vents with significant chang-
es in distribution, diversity and nature of the fau-
na (Dias et al. 2010).

Coccolithophores, which are the primary calcify-
ing phytoplankton group, and especially the most 
abundant species, Emiliania huxleyi, have shown 
a reduction of calcification at increased CO2  
concentrations for the majority of strains tested in 
culture experiments (Meyer and Riebesell 2015). 
Meier et al. (2014) analyzed in situ E. huxleyi coc-
colith weight from the NW Mediterranean Sea in 
a 12-year sediment trap series, and surface sed-
iment and sediment core samples. Their findings 
clearly show a continuous decrease in the average 
coccolith weight of E. huxleyi from 1993 to 2005, 
reaching levels below pre-industrial (Holocene) 
and industrial (20th century) values recorded in 
the sedimentary record, as most likely a result  
of the changes in the surface ocean carbonate  
system. Also, a drastic decrease in production, 
species diversity and anomalous calcification in 
coccolithophores has been shown along a natu-
ral pH gradient caused by marine CO2 seeps off 
Vulcano Island (Italy) (Ziveri et al. 2014).

To conclude, (1) Mediterranean fauna is highly  
vulnerable to human activities and climate change; 
(2) both structural and functional biodiversity of 
continental margins are significantly affected 
by very small temperature changes; and (3) the  
impact of human activities and climate change 
on marine biodiversity might be non-reversible. 
Since there are close interactions between deep 
and shallow systems, the vulnerability of deep-
sea ecosystems to climate change might also have  
important implications on the biodiversity and 
functioning of continental shelves.

The extent of changes caused by climate and 
non-climate drivers, the responses of Mediter-
ranean marine biota to these changes and their 
local-regional consequences are yet to be investi-
gated, as slow but significant transformations that 
may modify the neritic, pelagic, and benthic zones 
are still ongoing.

4.1.1.2 Past changes

Understanding the degree to which changes in 
Mediterranean marine ecosystems point to a  
directional trend driven by global warming re-
mains a challenge for marine ecology (Bertolino et  
al. 2017a). Reconstructing the temporal variabil-
ity of Mediterranean marine ecosystems on time 
scales longer than a few centuries beyond the  
instrumental records, crossing relevant climate 
variations and historical periods, can be critical for 
interpreting these changes.

Climate forcings of Mediterranean marine ecosys-
tems over the past thousand years have occurred 
on different time scales (Abrantes et al. 2005;  
Hennekam et al. 2014; Xoplaki et al. 2018). During 
the Holocene, rapid warming and cooling events 
have occurred which can, to some degree, pro-
vide analogues for the projected changes for the  
coming centuries (Blois et al. 2013; Benito-Garzón 
et al. 2014; Raji et al. 2015). In the Mediterranean, 
these past climate changes impacted the marine 
physico-chemical parameters of surface and deep 
waters (e.g., salinity, temperature, oxygenation, 
pH) which in turn affected marine ecosystems 
(Frigola et al. 2008; Schmiedl et al. 2010a; Mojtahid 
et al. 2015; Bertolino et al. 2017b).

Response of marine ecosystems to past 
temperature changes

In the Mediterranean region, the most abundant 
Holocene temperature proxy data, especially for 
the Common Era (the last 2,000 years) are alke-
none-derived records (Abrantes et al. 2012; Jalali 
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et al. 2016; Sicre et al. 2016). These studies docu-
ment natural long-term trends superimposed on 
a multidecadal variability in response to exter-
nal (e.g., solar) and internal forcings (e.g., NAO) 
which might explain some recently observed 
sea surface temperature trends (Versteegh et 
al. 2007). These studies also reveal a strong re-
gional component. For example, a high resolu-
tion study from the Gulf of Lion shows an over-
all sea surface temperature cooling trend since  
the mid-holocene followed by a rapid warming 
from ~1850 AD onwards that may parallel recent 
climate change (Jalali et al. 2016). In contrast, 
south of Sicily and in the eastern Levantine Ba-
sin, sea surface temperature records show pro-
gressive warming since the early Holocene with-
out a clear signature of the recent anthropogenic 
change (Castañeda et al. 2010; Luterbacher et 
al. 2012; Jalali et al. 2017). The planktonic eco-
system in the Siculo-Tunisian Strait responded  
to this progressive warming of the sea sur-
face temperature by increasing the abundance 
of warm dinocyst species (Spiniferites mirabi-
lis and Impagidinium aculeatum) and planktonic 
foraminifera (Globorotalia inflata and Globigeri-
noides ruber) (Rouis-Zargouni et al. 2010).

The Holocene was interrupted by at least four 
brief cooling events at ~9.2 ka, ~8 ka, ~7 ka and 
~2.2 ka cal. BP, which may be correlated to 
climate events recorded elsewhere, including 
in Greenland ice cores and in Atlantic Ocean 
sediments. Investigations on cetacean bones 
from the Grotta dell’Uzzo in northwestern 
Sicily (Italy) show that the rapid climate change  
around 8 ka coincided with increased strandings 
in the Mediterranean Sea (Mannino et al. 2015). 
Also, the diversity of sponge species living in 
coralligenous habitats from the Ionian and 
Ligurian was strongly affected by Holocene 
warming episodes with a significant loss of their 
biodiversity in recent decades (Bertolino et al. 
2017b, 2019).

In the eastern Mediterranean, multiproxy re-
cords derived from sediments from the south-
eastern Levantine (Schilman et al. 2001b; Mo-
jtahid et al. 2015) and the Adriatic Sea (Piva et 
al. 2008) reveal complex paleo-oceanographic 
changes during the late Holocene, with pro-
nounced anomalies during the Medieval Warm 
Period (MWP) (ca. AD 1150) and the Little Ice 
Age (ca. AD 1730). These temperature anoma-
lies were accompanied in the eastern Levantine  
Basin by a drastic change in planktonic fo-
raminiferal successions indicating periods oscil-
lating between cold and warm surface waters in 

opposite phase with the western Mediterranean 
records (Mojtahid et al. 2015). This east–west  
contrast in the climate signals has been con-
firmed by other proxy data (Jalali et al. 2016, 
2017).

These findings imply that long-term and short-
term climate-driven environmental changes, 
caused by global warming, will likely impact  
the entire food chain from planktonic ecosystems 
to large mammals (e.g., cetaceans) in the near  
future.

Response of marine ecosystems to past 
changes in stratification and ventilation

Throughout the Pleistocene, the eastern Mediterra-
nean experienced numerous anoxic events record-
ed by the cyclical deposition of organic-rich layers 
or sapropels (Rossignol-Strick et al. 1982; Rohling 
1994), the most recent being Sapropel S1 from 
~10 to 6 cal ka BP. Maximum insolation due to the 
Earth’s orbital precession minimum significantly 
intensified the northeast African monsoon, leading 
to enhanced discharge of fresh and nutrient-rich 
Nile River water into the eastern Mediterranean 
(Rossignol-Strick et al. 1982; Emeis et al. 2000). In 
the Levantine Basin, sea surface salinity during S1 
dropped by about 2.0 to 4.0 units compared to pres-
ent values (Kallel et al. 1997; Myers et al. 1998). This 
led to severe water column stratification and organ-
ic enrichment from the Nile river water. In the Ionian 
Sea, the correspondence of recent sapropel layers 
with peaks of the lower photic zone coccolithophore 
species Florisphaera profunda indicated the devel-
opment of a deep chlorophyll maximum, due to 
the pycnocline/nutricline shallowing in the lower 
part of the photic zone (Incarbona et al. 2011). In 
the SE Levantine Basin, a severe drop in planktonic 
foraminiferal diversity was recorded in response to 
the water column stratification and expressed by the 
near exclusive presence of the euryhaline tropical- 
subtropical species Globigerinoides ruber and the 
disappearance of deep-dwelling species (Mojtahid 
et al. 2015).

The combination of higher organic matter remin-
eralization and decreased ventilation resulted in 
widespread bottom water anoxia (Rohling 1994; 
Hennekam et al. 2014). In the Southern Aegean 
and Levantine Seas, there was a gradual increase 
in deep-water residence times, preceding S1 for-
mation by approximately 1–1.5 kyr. Once oxygen 
levels fell below a critical threshold, the benthic 
ecosystems collapsed almost synchronously with 
the onset of S1 deposition. The recovery of ben-
thic ecosystems during the terminal phase of S1  
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formation is controlled by subsequently deep-
er convection and re-ventilation over a period of  
approximately 1500 years. After the re-ventilation 
of the various sub-basins during the middle and 
late Holocene, deep-water renewal was more or 
less similar to recent rates (Schmiedl et al. 2010b). 
Several species of deep-water ostracods that  
are still common in the western Mediterrane-
an became extinct in the eastern Mediterranean  
Basin at the onset of early Holocene S1 sapro-
pel deposition and the related anoxia (Van Harten 
1987). The deep-water ostracode Bythocypris ob-
tusata apparently survived the oxygen crisis in the 
eastern basin itself. This suggests that full oxygen 
depletion may not have affected the bottom of all 
deep sub-basins and supports a midwater oxy-
gen-minimum model for these sub-basins (Van 
Harten 1987; Schmiedl et al. 2010b).

These paleoclimatic findings suggest that eastern 
Mediterranean pelagic and benthic marine ecosys-
tems are capable of abrupt transitions in response 
to gradual forcing. This is crucial for the projection 
of whether an increase in oceanic moisture availa-
bility under current and future warming could trig-
ger a sudden intensification of monsoon rainfall 
further inland from today’s core monsoon region 
(Schewe and Levermann 2017).

Response of marine ecosystems to past 
changes in productivity

In the western Mediterranean, productivity has 
shown an overall decreasing trend since the early 
Holocene with a marked fall in productivity after 
the 8.2 ky BP dry-cold event (Ciampo 2004; Jimén-
ez-Espejo et al. 2007; Melki et al. 2009). Super-
imposed on this long-term pattern, some studies 
show millennial–centennial time scale variability 
linked with weakening and strengthening of up-
welling conditions that have been simultaneous 
to changes in Western Mediterranean Deep Wa-
ter (WMDW) formation in the Gulf of Lions and by 
extent to the NAO over the past 7.7 ka (Ausín et 
al. 2015). These changes were accompanied by 
re-organization in coccolithophore assemblag-
es showing in particular, several high-amplitude  
oscillations of the productivity indicator species  
F. profunda (Ausín et al. 2015).

In the eastern Mediterranean, several proxy data 
support overall increased productivity during  
Sapropel S1 in a high-nutrient stratified environ-
ment (Gennari et al. 2009; Castañeda et al. 2010; 
Mojtahid et al. 2015). This period is characterized 
by the highest accumulation rates of planktonic  
foraminifera together with the productivity indica-

tor coccolithophore species F. profunda (Incarbona 
et al. 2011; Mojtahid et al. 2015). After Sapropel 1, a 
progressive decrease in surface water productivity 
was recorded and surface and deep-sea ecosys-
tems were driven by short-term changes in food 
quantity and quality as well as in seasonality, all 
of which are linked to millennial-scale changes in 
river runoff and associated nutrient input (Kuhnt 
et al. 2008; Schmiedl et al. 2010b). Particularly, 
the last 2.9 ka encompassed a succession of three 
ecosystem states characterized by nutrient-limit-
ing surface waters from 2.9 to 1.1 ka, and during 
the Little Ice Age, and by nutrient-rich waters from 
1.1 to 0.54 ka (Medieval Climate anomaly) (Mojta-
hid et al. 2015). These conditions were linked to pe-
riods of low and high Nile River runoff respectively, 
in line with arid and humid climate conditions in 
the Levant and Nile headwaters.

These findings imply that surface productivity in 
the overall oligotrophic Mediterranean Sea re-
sponds rapidly to short and long-term changes in 
nutrient input, either via rivers, winds or upwelling 
activity, modifying the benthic-pelagic ecosystems 
by extending into the entire food chain (Marino and 
Ziveri 2013), ultimately increasing eutrophication.

Response of marine ecosystems to past changes 
in pH

Holocene reconstructions of paleo-pH have yet 
to be undertaken in the Mediterranean. There 
is a promising raw data record of planktonic fo-
raminiferal (Neogloboquadrina incompta) δ11B and 
B/Ca. These geochemical proxies can be used for 
paleo-pH and show an overall decreasing trend in 
both sub-basins of the Mediterranean Sea during 
the last deglacial episode of glacial-interglacial  
CO2 rise (Grelaud et al. 2012; Marino and Ziveri 
2013). The response of marine calcifiers to this 
trend can be estimated via planktonic foraminifera 
shell weight that shows overall decreasing plank-
tonic calcification in response to this variability. In 
addition to this general trend, periods of changing 
seawater carbonate chemistry can be observed, 
which could be linked to low/high primary produc-
tion activity such as the anomaly observed during 
Sapropel 1 period, which can be linked to enhanced 
mineralization of organic matter.

These first studies show that Mediterranean ma-
rine calcifiers responded to past changes in sur-
face seawater carbonate chemistry conditions. 
The extent to which this affects marine ecosystems 
needs to be analyzed in the context of the current 
acidification in the Mediterranean’s surface and 
deep seawaters.
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4.1.2 Projected vulnerabilities and risks

4.1.2.1 Projected impacts and risks

As already discussed in Section 2.2.4.1, annual 
mean temperatures in the Mediterranean are 
now 1.5°C above late 19th century levels with 
magnitudes that vary locally depending on the 
period of analysis, the region and the type of 
dataset. The diurnal temperature range has also 
changed in some parts of the Mediterranean 
(Section 2.2.4.1). In absolute terms, the warmest 
parts are the southern and eastern Mediterranean 
and the major impact in these parts is the 
immigration of Indo-Pacific species (around a 
thousand species), which has accelerated in 
recent years, mainly for thermophilic species, 
due to rapid warming conditions (more than 50% 
of Mediterranean non-indigenous species are in 
the eastern Mediterranean) (Azzurro et al. 2011; 
Marbà et al. 2015; Kletou et al. 2016; Bariche et 
al. 2017). All Mediterranean waters, even the 
deepest, are affected by ocean acidification driven 
by Mediterranean Sea uptake of atmospheric CO2 
(Flecha et al. 2015; Hassoun et al. 2015; Palmiéri 
et al. 2015; Ingrosso et al. 2017) (Section 6.11). In 
addition, the effects of climate change are amplified 
by other major non-climate-related anthropogenic 
forcings, as the Mediterranean has one of the 
most populated coastlines with a long human 
history of exploitation of marine resources (with 
presently one of the world’s most intense coastal 
and maritime tourism areas), habitat degradation 
and plastic pollution (Cózar et al. 2015; Compa et 
al. 2019). More information about sea use changes 
and pollution are covered in Chapter 2.

The combination of various ongoing climate change 
processes (e.g., sea warming, ocean acidification, 
and sea level rise; Section 2.6) has caused detect-
able effects on marine organisms at individual, 
population, and ecosystem scales (Fig. 4.4). Future 
risks of seal level rise, marine heat waves, and 
ocean acidification are also highlighted in Sections 
6.9, 6.10 and 6.11 respectively. In fact, sponges, gor-
gonians, bryozoans, molluscs, and seagrasses are 
all affected by these drivers (Cerrano et al. 2006; 
Garrabou et al. 2009; Bensoussan et al. 2010; Mar-
ba and Duarte 2010), but primary producers, main-
ly calcifiers such as coccolithophores, are among 
the most vulnerable organisms (Meier et al. 2014). 
The impacts are expected to affect endemic and 
iconic ecosystems including major reorganizations 
of the biota distribution, species loss, marine pro-
ductivity, increases in non-indigenous species, and 
potential species extinction (Malcolm et al. 2006; 
Ramírez et al. 2018; Gao et al. 2020).

Projected impacts on microbes

Sea warming may have effects on the virulence 
of pathogens (viruses, parasites, etc.), favoring 
the frequency of epidemiological events, as most 
pathogens are temperature sensitive (Vezzulli 
et al. 2013) (see Section 4.1.1 and Section 2.3.4 in 
Chapter 2 for more information about biological 
pollutants), as observed for Vibrio shiloi, respon-
sible for the whitening of the coral Oculina pata-
gonica in the eastern Mediterranean (Kushmaro 
et al. 1998). This warming is also responsible for 
the expansion of harmful and/or toxic microalgae, 
mainly dinobionts such as Ostreopsis ovata, which 
produces palytoxins, a serious public health haz-
ard (Accoroni et al. 2016; Vila et al. 2016). Temper-
ature anomalies also seem to negatively affect the 
chemical defenses of marine organisms (Thomas 
et al. 2007), allowing pathogens to act undisturbed. 
Given the predicted rise in temperatures over the 
coming decades, a better understanding of the 
factors and mechanisms that affect the disease 
process will be of critical importance in predicting 
future threats to temperate gorgonians communi-
ties (Bally and Garrabou 2007), and other affected 
species in the Mediterranean Sea.

In deep waters, a recent study has shown that 
deep-sea benthic Archaea can be more sensitive 
to temperature shifts than their bacterial coun-
terparts. Changes in deep-water temperature 
may thus alter the relative importance of Archaea 
in benthic ecosystem processes (Danovaro et al. 
2016). With rising deep-water temperatures, the 
predicted positive response of prokaryotic metab-
olism to temperature increases may accelerate 
oxygen depletion in deep Mediterranean waters, 
with domino effects on carbon cycling and bioge-
ochemical processes across the entire deep ba-
sin (Luna et al. 2012). Along canyon-cut margins 
(e.g., the western Mediterranean), warming may 
additionally reduce density-driven domino effects, 
leading to decreased organic matter transport to 
the seafloor (Canals et al. 2006), though this very 
process is also likely to reduce physical distur-
bance on the seafloor and therefore affect deep-
sea ecosystems.

Projected impacts on primary and secondary 
production

Climate change affects the functioning of the bio-
logical components of ecosystems, from the basis 
of the food webs (plankton) to the higher trophic 
levels (e.g., predator fish). Phytoplankton consti-
tutes the autotrophic primary producers in the pe-
lagic food chains in marine waters and their annu-
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al cycle is affected by many physical features that 
in turn control nutrient levels. These include large 
horizontal gradients in temperature (Izrael 1991). 
Due to their rapid turnover and fast responses to 
environmental changes, plankton is considered a 
suitable proxy to highlight either environmental 
changes circumscribed in space and/or time or 
wider climatic variations. Warming, for example, 
is responsible for the expansion of harmful and/or 
toxic microalgae, mainly the dinobionts such as Os-
treopsis ovata, which produces palytoxins, a serious 
public health hazard (Accoroni et al. 2016; Vila et 
al. 2016). A new study in the Eastern Mediterranean 
has shown the occurence of important concentra-
tions of biotoxins (domoic acid, gymnodimines and 
spirolides) in various marine organisms sampled 
from the Lebanese shores (Hassoun et al. 2021). 
These concentrations were correlated with the 
abundance of biotoxins’ producers such as Pseu-
do-nitzschia, Prorocentrum, Alexandrium, and other 
species that could be occurring more frequently 
due to climate change (Hassoun et al. 2021).

Moreover, phytoplankton species responsible 
for bloom at late winter and at the beginning 
of spring (like Skeletonema costatum, Nitzschia 
spp., Leptocylindrus danicus and L. minimus and 
others) could start earlier, because features of 
temperate marine planktonic ecosystems are not 
only sensitive to annual variations in weather, but 
also any trends that might result from greenhouse 
warming or other factors that affect the climate 
system and both the density and timing of spring 
blooms will be altered in some regions (Townsend 
et al. 1994).

The taxonomic compositions of phyto- and zoo-
plankton may change under the influence of 
changes in ocean structure (Kawasaki 1991; Ber-
line et al. 2012; Howes et al. 2015) (Section 2.2.7). 
A thermophilic phytoplankton species could prolif-
erate especially in some enriched areas and could 
be ichthyotoxic or even toxic for humans (Abboud-
Abi Saab 2008, 2009; Accoroni et al. 2016; Abboud-
Abi Saab and Hassoun 2017). Some examples can 
explain such variations. In the Mediterranean Sea, 
phytoplankton biomass abundance and sea sur-
face thermal stratification show a strong inverse 
relationship at seasonal and sub-basin scales. 
At inter-annual and sub-basin scales, a gradual 
decline of the phytoplankton biomass across the 
entire central Mediterranean occurs with a delay 
of one year (Volpe et al. 2012). In the Adriatic Sea, 
during the past decade, the community structure 
and seasonality of phytoplankton have changed 
significantly. The phytoplankton annual cycle 
has become more irregular with sudden diatom 

blooms, reflecting the variability of meteorological 
events in recent years (Totti et al. 2019).

Only a few regional studies have investigated the 
sensitivity of the oligotrophic Mediterranean Sea 
to future climate change. The first investigations 
considered only the changes in circulation. For 
instance, a regional model of the northwestern 
Mediterranean domain found that the effect of  
local stratification due to climate change would 
have no drastic effect on the pelagic ecosystem 
(Herrmann et al. 2014). However, one study inves-
tigated the overall effects of a moderate climate 
change scenario (A1B SRES) on Mediterranean 
biological productivity and plankton communities 
and found an overall decrease in phytoplankton 
biomass in response to the stratification simu-
lated in their dynamic climate change scenario 
(Lazzari et al. 2014). A simulation was carried out 
for an increase in integrated primary productivity 
across the eastern Mediterranean Basin as a re-
sult of changes in density (decreased stratification) 
(Macías et al. 2015). However, conclusions from 
these studies remain limited by the fact that they 
are based on non-transient simulations and pres-
ent-day nutrient inputs.

A new study has investigated the influence of both 
changes in circulation and biogeochemical forc-
ings (rivers and input at Gibraltar) (Richon et al. 
2019). It suggests that climate change and nutri-
ent inputs from river sources and fluxes through 
the Strait of Gibraltar have contrasting influences 
on Mediterranean Sea productivity (Section 2.3.3). 
Increased future stratification globally reduces 
surface productivity in the eastern basin, but the 
biogeochemistry in the western basin is strongly 
controlled by nutrient input across the Strait of Gi-
braltar, while the eastern basin is more sensitive to 
vertical mixing and river inputs. In the near future, 
longer water stratification and warmer conditions 
may be essential clues to understanding local 
stress and species mortalities, especially because 
of the changes in primary productivity and lack of 
enough resources to face starvation periods (Rossi 
et al. 2017a). Once some species are eradicated, 
other species, pre-adapted to the new conditions, 
can replace locally extinct species, thus hamper-
ing ecosystem resilience to pre-impact conditions.

Unfortunately, the future evolution of nutrient at-
mospheric deposition has not been considered in 
modelling studies so far, despite the important role 
of nutrients for marine primary production (Richon 
et al. 2018b, 2018a). Using aerosol sampling and 
microcosm experiments performed during the 
TransMed BOUM cruise (June–July 2008), Ternon 
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et al. (2011) showed that primary production signif-
icantly increased at all tested stations after aerosol 
addition collected on-board and after Saharan dust 
analog addition, indicating that both additions re-
lieved on-going co-limitations, whereas a decline 
in the future of primary production is predicted and 
associated with trophic amplification toward phyto-
plankton and zooplankton (Richon et al. 2019).

Abrupt community shifts are expected in plankton 
communities coinciding with climate changes that 
alter local thermal regimes, which in turn interact 
with the thermal niche of species to trigger long-
term and sometimes abrupt shifts at the commu-
nity level (Beaugrand et al. 2019). Planktonic cal-
cifying organisms such as foraminifera, pteropods 
and coccolithophores are expected to be particu-
larly affected by ocean acidification and climate 
change. A recent study in the Mediterranean found 
foraminifera to be highly susceptible to tempera-
ture-induced surface water stratification and food 
availability. In correlation with these results, rap-
id warming increased surface ocean stratification 
impacting food availability and changes in troph-
ic conditions could be the causes of reduced fo-
raminiferal abundance, diversity, and species-spe-
cific changes in planktic foraminiferal calcification 
(Mallo et al. 2017). Coccolithophores, an abundant 
unicellular calcifying phytoplankton, are known to 
have a haplo-diploid life cycle with environmental 
affinities. This dimorphic life cycle might provide 
the ability to adapt to the "tropicalization" of Med-
iterranean environments under climate change, in 
conditions characterized by surface water with a 
relatively high calcite saturation state, high tem-
perature, stratification and nutrient limitation 
(D’Amario et al. 2017).

Projected impacts on macrobenthic and 
pelagic species

Sea warming, ocean acidification, sea level rise 
and changes in circulation patterns will likely 
change Mediterranean benthic and pelagic eco-
systems, as shown in Fig. 4.4, where potential 
impacts related to climate change are presented 
(Rossi et al. 2019). Repercussions will be different 
depending on the region and on the dominance of 
certain benthic organisms, species interactions, 
metabolic constraints, dispersion capability, and 
the presence of alien species that may take advan-
tage of the new physical, chemical, and biological 
conditions in the future oceans. Changes in trophic 
relationships will likely change biodiversity, both 
in the water column and in the different benthic 
communities. The nursery effect (i.e., sheltering 
and feeding grounds for juveniles and larvae) may 

be compromised if massive mortalities or deoxy-
genation affect the three-dimensional live struc-
tures (i.e., Posidonia meadows, gorgonian forests, 
pluriannual macroalgae, cold water corals, etc.). 
Also, changes in river runoff due to different rain 
frequency/quantities will also have effects on 
coastal nutrient and pollutant inputs. Nutrient and 
pollutant equilibria will also have direct or indirect 
effects on pelagic and benthic communities (Rossi 
et al. 2019).

Corals
Environmental change-driven modifications to the 
environment of gorgonian forests influence the 
larval settlement and recruitment processes of 
the benthic assemblages (Ponti et al. 2014b). In 
experiments, red coral (Corallium rubrum) showed 
a 59% decrease in its calcification rate at lowered 
pH based on experimental studies (Bramanti et al. 
2013). Disturbances such as harvesting pressure 
could act in synergy with ocean acidification 
bringing local populations to extinction. The 
changes in the likelihood of occurrence obtained 
by differences between present conditions and 
future scenarios show that the projected extent 
of potential mortality zones is higher than in the 
current climate for red coral and that coralligenous 
formations along the Mediterranean sites are less 
likely, mostly due to acidification increase. However, 
the adverse impact is localized to certain regions: 
an increase in likelihood is also reported for the 
presence of coralligenous in the North Aegean and 
northern Adriatic Seas (MEDSEA 2015; Gómez-
Gras et al. 2019).

The effects of in situ exposure to different pH 
levels (7.4–8.1) and temperatures (15.5–25.6°C) 
on mortality and net calcification rates have been 
assessed for Mediterranean scleractinian corals 
transplanted near a volcanic CO2 vent off Panarea 
Island (Prada et al. 2017). Results of this in situ 
study show a synergistic adverse effect on mortality 
rates for all corals (up to 60%), suggesting that 
high seawater temperatures may have increased 
their metabolic rates which, in conjunction with 
decreasing pH, could have led to rapid deterioration 
of cellular processes and performance. The same 
study (Prada et al. 2017) suggests that symbiotic 
corals may be more tolerant to increasing 
warming and acidifying conditions compared to 
asymbiotic corals. Laboratory cultures of coralline 
algae under conditions of elevated temperature 
and pCO2 revealed effects on photosynthesis, 
growth and calcification. Crustose coralline algae 
(Neogoniolithon brassica-florida) sensitivity to ocean 
acidification examined in CO2 seeps confirmed 
that calcifying algae are likely to be threatened  
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by ocean acidification, especially species living 
near their thermal limit. Further in situ and 
laboratory experiments indicate that N. brassica-
florida may not be able to contribute to reef 
accretion under the levels of seawater warming 
and ocean acidification projected by the end of this 
century (Fine et al. 2017).

Seagrass
Warming can induce declines in abundance 
through increased shoot mortality in Mediterrane-
an Posionia oceanica meadows. Younger life stages 
(i.e., seedlings) of P. oceanica may be particularly 
vulnerable to climate change. Insights into acid-
ification effects on seagrasses have come from 
CO2 vent surveys showing consistent loss of crus-
tose coralline algal epiphytes on seagrass leaves, 
and greater seagrass density close to seeps with 
a lower pH (Hendriks et al. 2017). Lower epiphyte 
loads can have positive impacts for seagrass as it 
reduced shading and nutrient uptake by the epi-
phytes.

In the case of seagrass such as P. oceanica, 
projections show a negative impact due to the 

effects of global warming over the next century and 
to significant climate change challenges posed to 
an endemic system that is already suffering losses 
from anthropogenic impacts (Jordà et al. 2012). 
The trajectory of P. oceanica meadows under the 
warming expected in the western Mediterranean 
was studied through the twenty-first century and 
warming seems to likely lead to the functional 
extinction of P. oceanica meadows by the middle of 
this century (year 2049 ± 10) even under a relatively 
mild greenhouse-gas emissions scenario (Jordà et 
al. 2012). Similarly, the distribution of two seagrass 
species under different scenarios was forecasted 
(Chefaoui et al. 2018), and the results found that, 
in the worst-case scenario (RCP 8.5 scenario), 
P. oceanica might lose 75% of suitable habitat by 
2050 and is at risk of functional extinction by 2100, 
whereas Cymodocea nodosa would lose around 
46.5% of suitable habitat by 2050. The same study 
(Chefaoui et al. 2018) also predicts that erosion of 
present genetic diversity and vicariant processes 
can happen, as all Mediterranean genetic regions 
could decrease considerably in extension in future 
warming scenarios. The functional extinction of  
P. oceanica would have important ecological 
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Figure 4.4 | Different drivers potentially affecting marine pelagos and benthos in the Mediterranean Sea  
(original diagram in Rossi et al. 2019, artwork by A. Gennari).
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impacts and may also lead to the release of the 
massive carbon stocks these ecosystems stored 
over millennia.

Mussels
The Mediterranean mussel Mytilus galloprovincialis 
is particularly sensitive to warming. A significant 
decrease in growth (total weight, shell length, 
shell weight) has been found in warmer conditions 
as well as clear dissolutions of the shells exposed 
to low pH conditions (-0.3 compared to ambient). 
Mussels exposed to low pH showed a clear loss 
in the organic layer covering the shell in summer, 
explaining the clear dissolution signal measured 
on these mussels (Gazeau et al. 2014). Non-climate 
drivers, such as chemical pollution (Section 2.3.3), 
are exacerbating the pressures on this important 
commercial mussel (M. galloprovincialis).

Jellyfish
The sensitivity and specificity of the Mediterranean 
Sea to climate change and other human-related 
stressors have been unequivocally documented 
in recent years by a significant increase in the 
number and frequency of jellyfish outbreaks (Coll 
et al. 2010; Canepa et al. 2014). Ocean warming 
and acidification may favor the dissemination of 
the non-indigenous Cassiopea andromeda that 
seems to benefit from the changed conditions 
(Fuentes et al. 2018). Also, seawater temperature, 
together with the quantity and quality of available 
food resources, are known as major drivers 
of gonadal outputs (Harland et al. 1992; Ben-
David-Zaslow and Benayahu 1999). Some studies 
showed that elevated temperature by itself or in 
combination with high feeding frequency (due to 
raised zooplankton prey abundance) increased 
the budding rate and bud size in Aurelia polyps 
populations worldwide (Hočvar et al. 2018). Thus, 
more food and warmer waters may be the key to 
understanding proliferation of jellyfish in general 
and non-indigenous tropical species in particular. 
In a sea highly impacted by the alteration of the 
trophic chains due to overfishing, seawater 
warming favors the successful dispersion and 
growth of jellyfish.

Winners and losers

The western basin is acidifying faster than the 
eastern basin (Goyet et al. 2016). A first tipping 
point has already been reached, since anthropo-
genic CO2 is already over 82 μmol kg-1 in many 
Mediterranean areas (Hassoun et al. 2015). The 
exact timing of the tipping points (Section 2.2.9.2) 
will strongly depend on the policies controlling 
human activities, which will impact both global 

warming and the anthropogenic CO2 increase both 
in the atmosphere and into the ocean. The results 
of these projections raise concerns about how ma-
rine organisms will respond in the context of each 
scenario, after reaching every tipping point.

Mean warming, acidification and associated non-
climatic stressors will have varying impact across 
the Mediterranean marine ecosystems, and result 
in both potential winners and losers. Impacts 
of ocean acidification and warming may extend 
to several Mediterranean marine and coastal 
ecosystem services, food provision, recreational 
activities, carbon absorption, climate regulation, 
coastal protection, and ultimately affecting human 
health (Falkenberg et al. 2020). Marine areas with 
economic activities directly depending on marine 
resources may face serious impacts on employment 
and benefits in sectors like aquaculture, open sea 
fisheries and tourism, which is relevant to many 
Mediterranean countries. Tourism may be affected 
by acidification and warming through the impact 
of degraded marine ecosystems (loss of iconic 
coralligenous species, such as gorgonians - soft 
coral (Bramanti et al. 2013) from diving experiences 
and through jellyfish outbreaks). Sensitivity of 
shell-forming species such as bivalve mollusks 
to changes in temperature and acidity presents a 
threat to the aquaculture sector (Rodrigues et al. 
2015).

A reduction in primary production linked to an 
increase in sea surface temperature could have 
negative impacts on fisheries catches and could 
exacerbate current overfishing trends (Cheung 
et al. 2010). Projections of biomass and fisheries 
catches across the Mediterranean under the 
high emission scenario RCP8.5 suggest a 5 and 
22% increase in total fish and macroinvertebrate 
biomass , and a 0.3 and 7% in fisheries catches by 
2021–2050 and 2071–2100, respectively, combined 
with changes in primary and secondary production 
(Moullec et al. 2019). Winners were mainly small 
pelagic species, thermophilic and/or exotic 
species, of smaller size and of low trophic levels. 
Loser species are generally large-sized, some of 
which are of great commercial interest. The bulk of 
the increase is expected in the southeastern part of 
the basin whereas significant decreases are most 
likely in the western Mediterranean Sea. Read 
more about projections for marine food resources 
and fisheries in Sections 2.4.2.3 and 3.2.2.2. 

Since temperature seems to be a main environ-
mental parameter driving the cnidarian commu-
nity composition, abundance and spatial distribu-
tion patterns in the Mediterranean Sea, jellyfish 
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are considered a possible group of winners under 
warming (Guerrero et al. 2018). The structure and 
phenology of the Mediterranean hydrozoan com-
munity displayed significant changes in species 
composition, bathymetric distribution, and repro-
ductive timing over the last decades. When the 
Scyphozoa group is considered, Pelagia noctiluca 
(among the most abundant jellyfish in the Medi-
terranean Sea and Eastern Atlantic waters) has 
increasingly frequent massive outbreaks associ-
ated with warmer winters (Milisenda et al. 2018). 
Swarms of the Portuguese Man-of-War (Physalia 
physalis), in summer 2010 were the result of an un-
usual combination of meteorological and ocean-
ographic conditions during the previous winter 
and not a permanent invasion favored by climate 
changes (Prieto et al. 2015). However, many stud-
ies have attributed the increase in Pelagia noctiluca 
outbreaks to the alteration of the trophic struc-
ture of ecosystems due to overfishing and/or eu-
trophication on the one hand, and by sea warming 
and changes in surface hydrography on the other 
(Licandro et al. 2010; Canepa et al. 2014). Water 
temperature affects sexual reproduction through 
changes in the energy storage and gonad develop-
ment cycles and it is still expected that the species 
composition and biogeography of jellyfish commu-
nities will change under global warming.

4.1.2.2 Vulnerabilities

Climate-related vulnerabilities

It is expected that the ocean’s primary production 
will, in general, be reduced with environmental 
change. As a result, production zones may 
be redistributed and the natural habitat of 
commercially valuable species of fish may change 
(Izrael 1991). On the other hand, climate change 
can also lead to changes in the composition 
of the bottom of marine food webs. The rise in 
water temperature has already increased jellyfish 
population outbreaks in the Mediterranean Sea 
(Section 4.1.2.1), such as Pelagia noctiluca, a 
planktonic predator of fish larvae and of their 
zooplankton prey. The outbreaks of this species, 
along with other jellyfish species, may become 
more frequent in the Mediterranean Basin in 
the future and extend over a longer period of 
the year than previously, causing changes to the 
pelagic food web and thereby reducing fishery 
production (Licandro et al. 2010). Rising seawater 
temperatures might also trigger the increased 
spread of pathogens throughout the Mediterranean 
in the future, affecting both marine organisms, and 
human health (Danovaro et al. 2009) (see Section 
5.2.3 on heat-related impacts).

Temperature has a major direct impact on the 
physiology, growth, reproduction, recruitment and 
behavior of marine organisms such as fish. Warming 
associated with climate change already affect the 
Mediterranean ecosystem for some benthic and 
pelagic species (Marbà et al. 2015). Warming combined 
with a decline in oxygen and resource availability 
reduces fish body size, with the average maximum 
body weight of fish expected to shrink by 4% to 49% 
from 2000 to 2050 (Cheung et al. 2013). Also, fish 
tend to adapt to local environmental temperatures. 
Therefore, among the most perceptible large-
scale consequences of climate change is the shift 
in spatial distribution range of marine organisms, 
which will make some Mediterranean sub-basins 
more vulnerable to drivers than the others. Seawater 
warming will induce a loss of climatically suitable 
habitats for various organisms, causing distribution 
shifts, as well as species extinction. The diversity 
of fish assemblages is predicted to be severely 
affected due to their loss of suitable climatic niches. 
Demersal species will suffer regional impacts 
associated with the expected changes in primary 
production, thermohaline circulation, and the 
severity of winter weather (Section 2.2.2). Warming 
and the expected increase in Atlantic water entering 
into the Mediterranean will likely affect migrations 
and spawning behavior in large pelagic fish (Barange 
et al. 2018). In recent decades, several mass 
mortality events of invertebrates have occurred in 
the Mediterranean which have been linked to the 
documented rise in seawater temperatures (Rivetti 
et al. 2014).

Projections for the global warming scenario (SRES 
A2) for the potential future distribution of 75 
Mediterranean endemic fish species have shown 
that by 2041-2060, 31 species are projected to extend 
their geographic range, whereas the geographic 
range of 44 species is projected to reduce (Ben Rais 
Lasram et al. 2010). Also, 25% of the Mediterranean 
continental shelf is predicted to undergo an overall 
change to endemic assemblages by the end of the 
21st century, where the survival of 25 species is 
threatened and six species would become extinct 
(for example, starry sturgeon Acipenser stellatus 
and European sturgeon Huso huso). For “narrow” 
endemic species found strictly in the Mediterranean 
Sea that do not reach the neighboring Atlantic Ocean 
and Black Sea, their extinction would be irreversible. 
By the middle of the 21st century, the coldest areas of 
the Mediterranean Sea, namely the Adriatic Sea and 
the Gulf of Lion, would act as a refuge for cold-water 
species, but by the end of the century, those areas are 
projected to become a "cul-de-sac" that would drive 
those species towards extinction (Ben Rais Lasram 
et al. 2010). Another study concludes that 54 species 
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will have lost their climatically suitable habitat at 
the end of the century and that species richness will 
decrease across 70.4% of the continental shelf area 
(Albouy et al. 2013). Information about the trends of 
fisheries in the Mediterranean is detailed in Sections 
2.4.2.1 and 3.2.1.2.

Anthropogenic vulnerabilities

Ship collisions and harmful fishing practices are 
among the non-climate drivers exacerbating 
the vulnerability of marine cetaceans in the 
changing Mediterranean. The previous analysis 
of ship collision records for the relatively isolated 
population of fin whales in the Mediterranean  
Sea from 1972 to 2001, indicated that the fatal 
collision rate increased from 1 to 1.7 whales per 
year during this period mainly in the Pelagos 
Sanctuary (the largest marine protected area 
created for marine mammals in the Mediterranean; 
see Section 4.1.1) due to high levels of traffic and 
whale concentrations (Panigada et al. 2006). 
Studies by Pennino et al. (2016, 2017) assessed 
the risk exposure for high intensity vessel traffic 
areas for the three most abundant cetacean 
species (Stenella coeruleoalba, Tursiops truncatus 
and Balaenoptera physalus) in the southern area 
of the Pelagos Sanctuary. They modeled both the 
occurrence of three cetacean species and marine 
traffic intensity, and identified two main hotspots 
of high intensity marine traffic in the area, which 
partially overlap with the area where the studied 
species are present. International shipping, 
although considered as an environment-friendly 
form of transportation, directly and indirectly 
impacts cetaceans in many ways, particularly in 
the Mediterranean Sea, one of the world’s busiest 
waterways (Bray et al. 2016; Coomber et al. 
2016). More recent data about maritime traffic in 
relation to cetaceans, investigated through direct 
observations (July 2013–June 2015) and along 
three fixed transects in western Mediterranean 
areas, showed seasonal maritime traffic intensity 
with the highest vessel abundance impacts on 
cetaceans in most offshore sub-areas in the spring 
and summer, especially for the species B. physalus 
and S. coeruleoalba (Campana et al. 2017).

4.1.3 Adaptation

4.1.3.1  Long-term monitoring and 
adaptation strategies

Temperature significantly affects eukaryotic 
phytoplankton metabolism, increasing the demand 
for nitrogen with consequences for the marine 
carbon cycle due to shifts towards N-limitation 

(Toseland et al. 2013). Experiments reveal that 
some taxa of marine phytoplankton may adapt 
to ocean acidification, and there are also strong 
indications from studies of variation and structure 
in natural populations that selection on standing 
genetic variation is likely (Collins et al. 2014).

To better evaluate the adaptation strategies of 
plankton communities to the diverse climate 
and non-climate related drivers, it is necessary 
to assess the vulnerabilities of the pelagic 
ecosystem, including both plankton and nekton 
communities, to the impacts of climate change, 
including temperature and pH variations. Taking 
into consideration the diversity of plankton 
communities’ responses to climate change and 
other stressors in every Mediterranean sub- 
basin (Crise et al. 1999; Psarra et al. 2005; 
Vadrucci et al. 2008; Calvo et al. 2011; Marić et 
al. 2012; Ouba et al. 2016; Danovaro et al. 2017; 
Benedetti et al. 2018), wider monitoring coverage 
is needed to improve our knowledge about the 
different adaptation processes that characterize 
and best suit each geographical zone. Since each 
Mediterranean Basin represents a unique set 
of interrelated physical, biological and human 
components and processes, the extent and nature 
of impacts in one basin will differ between sub-
basins as well.

Also, an assessment of the implications of accel-
erated temperature increase in the Mediterranean 
Sea and the identification of the types of problems 
that a marine area will face is crucial in order to 
anticipate the need for action (Lacoue-Labarthe 
et al. 2016). In their review about the biodiversity 
and ecosystem functioning, Danovaro and Pusced-
du (2007) have recommended enhanced strategies  
for protecting the Mediterranean Sea, such as 
monitoring environmental quality, grey and black 
lists of chemicals, utilizing the best available tech-
nologies once they have been tested for their eco-
sustainability, applying precautionary principles 
(e.g., reducing pollution emissions), monitoring 
biodiversity and long-term temporal changes in 
community structure. The suggestion has been 
made to assess not only the apparent changes, but 
also the potential biodiversity (cyst banks) while 
paying particular attention to species replacement 
in relation to functional biodiversity (Danovaro and 
Pusceddu 2007).

4.1.3.2  The role of Marine Protected 
Areas (MPAs) for adaptation

Marine Protected Areas cannot halt climate 
change and impacts such as ocean acidification, 
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but they are an important tool for enhancing the 
resilience and adaptive capacity of ecosystems. A 
topical example in this sense are Mediterranean 
coralligenous reefs, critical for life-supporting and 
ecological functions and providing a natural capital 
like biomass production, erosion control, historical, 
economic and intrinsic value. Marine protected 
areas provide refuge and replenishment zones 
for this heavily exploited and vulnerable species. 
Moreover, they protect, aid recovery and are home 
to a large number of species (Rodríguez-Rodríguez 
et al. 2015; Pascual et al. 2016). Few MPA designs 
account for official MPA boundaries regardless 
of boundary overlaps and their ecological 
implications (Gabrié et al. 2012), whereas others 
account for MPA boundary overlaps and thus foster 
a more ecologically meaningful, functional spatial 
approach through “protected polygons” (Foster et 
al. 2014).

The effectiveness of MPAs can be improved if they 
form part of a system of protected areas geared 
towards ensuring ecological representativeness 
and creating networks. Nevertheless, subdivid-
ing an area into zones with varying intensities of 
use (zoning), ranging from total protection (ma-
rine reserves where extractive use is prohibited) 
to areas serving primarily to uphold sustainable 
and/or traditional use of marine resources, and 
areas that are closed to fishing activities, is in-
creasingly recognized as a useful instrument for 
sustainable, ecosystem-based fisheries manage-
ment, particularly artisanal fisheries (Pascual et 
al. 2016). MPA ecological effectiveness, defined 
as species self-replenishment and colonization 
through dispersal, depends, among other varia-
bles, on MPA design factors such as size, shape, 
spacing and location (Shanks et al. 2003; OSPAR 
Commission 2007; Roberts et al. 2010; Sciberras 
et al. 2013). Different categories of MPAs often sit 
side by side with core areas under strict protec-
tion and peripheral zones with fewer restrictions 
relating to use.

An example of these MPAs is the Mediterranean 
Marine Protected Area of Medes Islands, in the 
northwestern Mediterranean Sea. This area was 
recently the subject of an economic assessment, 
using monetary valuation, of changes in the 
quality of highly biodiverse coralligenous systems 
(Rodrigues et al. 2015). The Adriatic Sea, for 
example, has the largest number of MPAs and 
also the smallest, least spaced and least compact 
designated and functional MPAs. The design 
pattern in this ecoregion seems to have randomly 
followed a design approach of “several small” 
MPAs (Rodríguez-Rodríguez et al. 2015). The 

establishment of a transboundary Large Marine 
Protected Area (LMPA) and Fisheries Restricted 
Area (FRA) can reverse ecological and socio-
economic losses in the Adriatic, one of the most 
exploited areas of the Mediterranean as shown in 
a study that presents current opportunities and 
expected benefits of LMPAs (Bastari et al. 2016). 
This demonstrates that the establishment of MPAs 
should take into consideration the structural and 
functional links between key organisms within the 
ecosystem and between ecosystems to guarantee 
a sustainable adaptation strategy.

The majority of MPAs are located along the  
basin’s northern shores, highlighting the lack 
of MPAs in the south and east coasts (Abdulla et 
al. 2008). Coll et al. (2012) studied the interaction 
between marine biodiversity and threats (includ-
ing climate change) across the Mediterranean 
and assessed their spatial overlap with current 
marine protected areas. They identified areas  
of conservation concern where future protec-
tion activities should be targeted through spatial  
prioritization. Spatial prioritization in conservation 
is commonly employed to direct limited resourc-
es to where actions are most urgently needed 
and most likely to produce effective conservation  
outcomes. Resilience is increasing through build-
ing MPA networks and setting priorities at the  
regional level. Examples for the conservation of  
three key Mediterranean habitats, i.e., seagrass 
Posidonia oceanica meadows, coralligenous forma-
tions, and marine caves, were determined through 
a systematic planning approach (Giakoumi et al. 
2013).

4.1.3.3  Management of fisheries and 
adaptation

Fisheries is one of the main sectors related to  
resource-based growth activities in the Mediter-
ranean area (Section 5.1.1.3). Sustainable develop-
ment of fishing activities and the management of 
their impacts require better constructive collab-
oration between scientists, industry and govern-
ment agencies. The analysis of all available stock 
assessment and effort data for the most important 
commercial species and fleets in the Mediterra-
nean Sea since 2003, demonstrated a significant 
decline for red mullet and giant red shrimp stocks 
(Cardinale et al. 2017). This latter study conclud-
ed that the European Common Fisheries Policies 
have failed to achieve the maximum sustaina-
ble yield before 2015 for the Mediterranean Sea 
and will face large difficulties to reach maximum  
sustainable yield and Marine Strategy Framework 
Directive targets before 2020 under the current 
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management system, due to many factors, such 
as the ineffectiveness of the putative effort reduc-
tions to control fishing mortalities, the continuous 
failure to follow scientific advice, and the exist-
ence of ineffective national management plans as 
a primary management measure (Cardinale et al. 
2017).

The establishment and implementation of man-
agement plans that could efficiently help fish-
eries to adapt relies on knowing each species 
properties and demographic features. For exam-
ple, the local and isolated groups of the Euro-
pean anchovy (Engraulis encrasicolus) may have 
unique demographic properties and should be 
managed separately since they may react inde-
pendently to exploitation (Jemaa et al. 2015a). The 
same conclusion has been highlighted for pelagic  
species (such as the European sardine, Sardina  
pilchardus) with high gene flow to ensure sustain-
able fishery benefits and efficient conservation as 
they also may have unique demographic proper-
ties and responses to exploitation (Jemaa et al. 
2015b).

The current knowledge on Mediterranean fisheries 
and ecosystems is limited. In fact, the effect of 
poorly regulated fisheries, in combination with 
ongoing climate forcing and the rapid expansion 
of non-indigenous species, are rapidly changing 
the structure and functioning of ecosystems 
with unpredictable effects on the goods and 
services provided (Colloca et al. 2017). Although 
this would call for urgent conservation actions, 
the management system implemented in the 
region appears too slow and probably inadequate 
to protect biodiversity and secure fisheries 
resources for future generations. This is why 
some studies are encouraging the adoption of 
other management approaches such as the 
establishment of a transboundary Large Marine 
Protected Area (LMPA), specifically a no-trawl 
area LMPA or Fisheries Restricted Area (FRA), 
which is a promising and feasible approach for 
reversing ecological and socio-economic losses 
in some Mediterranean sub-basins such as the 
Adriatic (Bastari et al. 2016), as mentioned earlier 
in Section 4.1.3.2.

Maintaining ecosystem services (through efficient 
fisheries management, sustainable and ecofriend-
ly aquaculture industry (Section 3.2) is crucial for 
the food security, economic growth and well-being 
of neighboring populations (Section 5.1.1.3). Devel-
oping practical management actions that take into 
consideration the uniqueness of each species and 
their responses towards different drivers is crucial 

to increasing their resilience and plasticity in the 
context of climate change.

4.1.3.4  Adaptation strategies 
for ocean warming and 
ocean acidification in the 
Mediterranean Sea

Studies on adaptation to climate change in the 
Mediterranean Sea are still very limited. Actions 
considered are mostly supply-side oriented, aimed 
at restoring or protecting the production of marine 
goods and services harmed by ocean warming and 
acidification for example (Ziveri et al. 2017). The 
demand-side dimension can ultimately produce 
economic consequences of the same or greater 
magnitude than adaptation through supply-side 
strategies and actions.

The Mediterranean Sea is a marine biodiversity 
hotspot (Coll et al. 2010) and ecosystems with 
high biodiversity and/or redundancy of functional 
groups (for example, several species fill the role of 
algal grazers) tend to be more resilient and recover 
more quickly following disturbance. This implies 
that biodiversity preservation and improvement 
are logical methods for sustaining ecosystems 
responding to rapid environmental stressors. In 
practice this means, on the one hand, exploiting the 
acclimation potential of many calcifying species 
of the Mediterranean and, on the other hand, 
protecting other species. The recommendation 
of a drastic reduction of local drivers is strictly 
connected with mitigation and adaptation 
strategies, since reducing local stressors – such 
as land-based pollution, coastal development and 
overharvesting – is the most common strategy for 
improving or maintaining ecosystem resilience 
(read more on economic vulnerabilities/risks and 
the adaptation measures in Sections 5.1, 6.10.2 and 
6.11.2).

In the Mediterranean, commercial fisheries 
are economically important on a regional and 
local scale or for some specific communities 
and user groups. Although there is still limited 
knowledge on the combined direct impacts of 
ocean acidification and warming on fish, there 
are indications of the physiological and behavioral 
effects of CO2 on fish (Nilsson et al. 2012; Milazzo 
et al. 2016). However, the two phenomena could 
indirectly impact fisheries affecting phytoplankton 
community structures at the bottom of the food 
web (Nagelkerken et al. 2016). In general, when 
fishing activity is more "sustainable", it tends 
also to be more resilient to negative shocks. All 
the measures working in this direction are thus 

CHAPTER 4 - ECOSYSTEMS



351CLIMATE AND ENVIRONMENTAL CHANGE IN THE MEDITERRANEAN BASIN  |  MedECC

also suitable for mitigating the adverse economic 
effects of ocean acidification.

Aquaculture is a key economic sector of fisheries 
affected by ocean acidification and warming. 
In the Mediterranean, detrimental effects on 
bivalve mollusk species might arise from the 
associated increase in sea surface temperature, 
ocean acidification and possible synergies with 
other non-climate drivers (Gazeau et al. 2014). A 
study suggests that the increase in frequency and 
duration of summer heatwaves are perceived as the 
highest threat, having been observed in a majority 
of the studied production sites in past years, 
with effects on seed (spat), adult mortality and 
byssus attachment (Rodrigues et al. 2015). Ocean 
acidification knowledge transfer and monitoring 
programs are essential for the development of 
appropriate strategies to counteract the effects 
of these phenomena, which are still poorly 
known by stakeholders. Adaptation in this sector 
tends to be particularly expensive since it usually 
requires costly investment in new machinery or 
in modifying existing machinery so as to reduce 
negative environmental impacts. A recent study 
emphasizes that the cost of management and 
mitigation strategies and actions will be dependent 
upon the socio-economic context. Specifically, 
costs will likely be greater for socio-economically 
disadvantaged populations, exacerbating the 
current inequitable distribution of environmental 
and human health challenges (Falkenberg et al. 
2020).

Some species are proven to improve the resilience 
of their habitat to various drivers. For example, 
Paramuricea clavata forests may enhance biocon-
struction processes and increase the resistance 
and resilience of benthic assemblages in Mediter-
ranean coralligenous habitats (Ponti et al. 2014b, 
2018). The lack of available food, rising temper-
ature and decreasing pH trends will be essential 
to understanding future population dynamics. 
Bioengineering as a possible adaptation strategy 
includes techniques to mitigate chemical effects 
of increased atmospheric CO2 concentrations on 
the oceans. These chemical changes may have a 
variety of important biological consequences, in-
cluding some potentially negative impacts, which 
are controversial and surely require further con-
sideration. These ideas have never been tested in 
situ (Ziveri et al. 2017).

In conclusion, any kind of action that improves 
marine ecosystem health, resilience or biodiversity 
could delay and reduce the adverse effects of 
climate drivers. This includes the implementation 

of more sustainable fishing practices as well 
as reducing pollution from agricultural activity, 
sustainable tourism and developing more effective 
waste management. Marine protected areas 
can potentially have an insurance role if they are 
placed in locations not particularly vulnerable to 
ocean acidification and climate change. However, 
the detrimental effects of these global phenomena 
on certain habitats in vulnerable regions do 
not make MPAs easily effective in improving 
species resilience to environmental change when 
considering long-term strategies. Developing 
specific adaptation options, for example new 
practices in aquaculture or improving marine 
and coastal protection against storm surges and 
coastal erosion, could be effective but particularly 
costly (see Sections 3.3.2.2 and 3.3.2.3 for more 
information about the use of marine energy as a 
renewable energy resource and the vulnerability of 
coastal energy systems to climate extremes).

Adaptation strategies must have medium- to 
long-term effectiveness. They thus require careful 
and anticipatory planning to enjoy their benefits 
reasonably soon, and especially to enable them to 
tackle problems while they are still manageable. 
Overall, adaptation strategies are a necessary to 
response to ongoing and expected Mediterranean 
environmental changes. However, the necessary 
strategy for reducing climate change impacts 
needs effective mitigation policies and actions to 
be implemented.

4.1.3.5  Regional observation 
networks as a tool for 
adaptation

Another aspect that might improve the effec-
tiveness of managed adaptation strategies is the 
establishment of active regional and local ob-
servation networks. Local observation programs  
and regional networks that include scientists  
from different Mediterranean countries/sub- 
basins create a solid platform for peers to collab-
orate in monitoring climate change drivers and 
impacts, enhance data sharing policies and acces-
sibility, and improve capacity-building among the 
members of their scientific community.

Furthermore, long-term active hubs would defi-
nitely help in deriving more robust findings about 
the different environmental trends in the Mediter-
ranean, which will provide more comprehensive 
and conclusive results for decision makers. Within 
the Global Ocean Acidification-Observing Network 
(GOA-ON), a regional Mediterranean hub has 
been recently established, called the Ocean Acid-
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ification Mediterranean Hub31 (OA Med-Hub). This 
hub could be an important platform for providing 
robust ocean acidification-related results for the 
scientific community, the general public and deci-
sions-makers, which would help to create relevant 
future adaptation actions in Mediterranean coun-
tries.

Moreover, these regional networks could be an 
effective tool for improving public awareness  
and enhancing capacity-building among scientists 
who are not able or do not have the appropriate 
tools/equipment to monitor specific phenomenon. 
Thus, such hubs could unify the methodologies 
and tools adopted to measure and monitor short- 

and long-term climate change trends, and their 
effects on local and regional marine resources 
and ecosystems. They could also help obtain funds 
for laboratories that do not have the capacities 
to properly survey climate change drivers and 
impacts. For example, GOA-ON published recently 
an implementation strategy document32 to provide 
guidance that will harmonize sampling and anal-
ysis procedures, to compare results and trends. 
Creating similar networks that could target other 
phenomena, such as deoxygenation, warming, 
etc., and good communication between these hubs  
will be crucial for developing suitable and holistic 
key messages that could be provided to policymak-
ers.

4.2.1 Current condition and past trends

4.2.1.1 Observed changes

The coastal zone refers to the area in which the 
interaction between marine systems and the land 
dominate ecological and resource systems. These 
rather complex systems consist of coexisting biotic 
and abiotic components which interact with human 
communities and their socio-economic activities 
(UNEP/MAP/PAP 2008). In sensitivity studies 
concerning expected sea level rise, the term “Low- 
Elevation Coastal Zone” (LECZ) has been used for 
the specific area up to an elevation of 10 m (Vafeid-
is et al. 2011). Ecosystems in this zone are referred 
to hereafter as “coastal ecosystems”. The natural 
coastal systems include distinct coastal features 
and ecosystems such as rocky coasts, coral reefs, 
beaches, barriers and sand dunes, estuaries, la-
goons, and generally the land located at the lower 
end of drainage basins, where stream and river 
systems meet the sea and are mixed by currents 
and tides (i.e., deltas, river mouths, wetlands) 
(Convertino et al. 2013).

To evaluate the risks that could affect Mediterra-
nean coastal systems, their natural habitats, or 
particular events that could occur on its shores, 
many indexes have been developed, such as the 
Environmental Sensitivity Indices (ESI) developed 
for the evaluation of oil spill risk in Mediterranean 

coasts (Gugliermetti et al. 2007), the participatory 
multicriteria analysis (MCA) for a multidimension-
al assessment of coastal erosion risks (Roca et al. 
2008), and the coastal dune vulnerability index for 
Mediterranean ecosystems (Ciccarelli et al. 2017). 
Also, a Coastal Risk Index (CRI-Med) has been de-
veloped to assess coastal vulnerabilities associat-
ed with the physical and socio-economic impacts of 
climate change in all Mediterranean coastal zones 
(Satta et al. 2017; Fig. 4.5). By applying the CRI-Med 
on 21 Mediterranean countries, coastal risk hot-
spots are found to be predominantly located in the 
South-Eastern Mediterranean region. Countries 
with the highest percentage of extremely high-risk 
values are Syria (30.5%), Lebanon (22.1%), Egypt 
(20.7%), and Palestine (13.7%). Coastal hotspots 
are designated to support the prioritization of pol-
icies and resources for adaptation and Integrated 
Coastal Zone Management (ICZM).

Natural Mediterranean habitats under severe 
degradation

Climate change affects marine biodiversity, espe-
cially in coastal habitats (Gatti et al. 2015; Bertolino 
et al. 2016, 2017a; Betti et al. 2017; Longobardi et 
al. 2017). Mediterranean shores have unique and 
highly diversified landscapes, which harbor a high 
level of diversity in fauna and flora (Section 2.4). 
Directly or indirectly, sea level rise (Section 2.2.8), 
global warming (Section 2.2.4) and changes in 

31 http://goa-on.org/regional_hubs/mediterranean/about/introduction.php

32 http://goa-on.org/documents/general/GOA-ON_Implementation_Strategy.pdf
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rainfall patterns (Section 2.2.5) would greatly mod-
ify coastal ecosystems and rivers with significant 
impacts on the way they function. For instance, 
in response to relative sea level rise, coastal wet-
lands and river mouths would be affected, while 
reduced precipitation and prolonged droughts will 
reduce the water discharge of Mediterranean riv-
ers and catchments (Merheb et al. 2016). Dynamic 
coasts are likely to retreat or disappear because of 
the effects of erosion due to the accelerated rise in 
sea level. With the accelerated rise in sea level, the 
least mobile species will likely be the most severely 
impacted in contrast to mobile organisms such as 
fish and water-birds which are more able to adapt.

Coastal ecosystems function in a way that main-
tains the preservation of energy and matter 
transfer and plays an important role in global 
cycles (such as carbon and nitrogen global cycles) 
between the continental and marine realms. Fur-
thermore, in addition of hosting a wide diversity of 
wild faunal and floral species, coastal ecosystems 
are also often used as aquaculture platforms (i.e., 
fish, shellfish cultures, etc.), and the pressures on 
them may have significant impacts on their uses.

Sandy beaches and sand dunes
Escalating pressures caused by the combined 
effects of population growth, demographic shifts, 
economic development and global climate change 

pose unprecedented threats to sandy beach eco-
systems across the world (Velegrakis et al. 2016; 
Vousdoukas et al. 2016). From the sub- to the 
supra-littoral, sandy habitats are important in 
preventing coastal erosion and flooding, but their 
value may be enhanced by the many biological 
processes that complement or even increase their 
role in coastal defense. For example, in addition to 
their role in nourishing other sandy systems, shal-
low, sub-tidal sands also support seagrass beds, 
a habitat increasingly recognized as important for 
coastal protection due to their ability to stabilize 
and accumulate sediment, and attenuate and dis-
sipate waves (Christianen et al. 2013; Ondiviela et 
al. 2014).

In addition to direct anthropogenic impacts (e.g., 
urban and agricultural development, Sections 
2.3 and 2.4), climate change is predicted to have 
dramatic, widespread and long-lasting conse-
quences on sandy coastal ecosystems. For in-
stance, sea-level rise increases the phenomenon 
of "coastal squeeze", but increased storm intensity 
and frequency are likely to be the major challenges 
faced (Feagin et al. 2005; Harley et al. 2006; Ve-
legrakis et al. 2016; Vousdoukas et al. 2016).

As ecosystems, sandy beaches play varying im-
portant roles, and interact closely with coastal 
dunes both physically and biologically. The typical 

Coastal risk index
Extremly high
High
Modarate
Low
Extremly Low
Hotspot

Figure 4.5 | Coastal Risk Index (CRI-MED) map of the Mediterranean, indicating five levels of vulnerability (Satta 
et al. 2017).
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coastal dune system is composed mainly of three 
components: the submerged beach, the emerged 
beach and the dune (Fig. 4.6). For thousands of 
years, human activities have been impacting the 
sandy beaches and coastal sand dunes of the 
Mediterranean Basin through agriculture, hus-
bandry and the deliberate use of fire (Lavorel et 
al. 1998; Cori 1999; Falcucci et al. 2007). In recent 
decades, tourism has caused important damages 
as the main driver of coastal urbanization, the 
increase of summer visitors, and the introduction 
of non-indigenous or exotic species (Tzatzanis et 
al. 2003). The pedestrian and motorized pathways 
all over dunes lead to vegetation destruction and 
therefore enhanced weathering and erosion. Waste 
and non-indigenous species introduction are also 
destruction factors among many other drivers 
highlighted in Sections 2.3 and 2.5.

The impact of human pressure on landscape 
patterns and plant species richness in Mediterra-
nean coastal dunes was assessed and a general 
simplification was observed in the natural dune 
spatial pattern with a decline in plant richness 
where human pressure is important (Malavasi et 
al. 2018). Assessing the conservation status of 
coastal dune systems in Tuscany (Italy), Ciccarelli 
(2014) showed that the general spatial pattern of 
vegetation there was close to the natural zonation 
(Acosta et al. 2007; Forey et al. 2008; Miller et al. 
2009; Fenu et al. 2013), with a variable sequence 
of coastal dune plant communities, ranging from 
the disappearance of the foredune habitats to the 
presence of the complete sequence. Vegetation of 
the driftline disappeared in this study’s transects 

where erosion was significant, while embryonic 
shifting dunes with Elymus farctus were well rep-
resented in the area. However, embryonic dune 
habitat showed a decrease in coverage in transects 
belonging to coastal tracts affected by erosion. 
Although vegetation of the driftline and embryonic 
shifting dunes have few taxa with low coverage, 
they represent an important element that must be 
considered in conservation programs (Ciccarelli 
2014).

Rocky coasts
Rocky intertidal shores play an important role for 
marine habitat functioning (Sugden et al. 2009). 
They are a destination for leisure, exploration and 
relaxation (Hall et al. 2002; Sugden et al. 2009), 
and are subject to extractive activities for food, bait 
or ornamental purposes (Murray et al. 1999; Hall 
et al. 2002). Hence, the benefits provided by the 
Mediterranean intertidal area, and the associated 
economic assets, are relevant in the perspective of 
integrated coastal zone management and under 
the current climate change scenario. Rocky shores 
are biologically rich and diverse habitats (Bened-
etti-Cecchi et al. 2003; Ceccherelli et al. 2005; 
Schembri et al. 2005; Mangialajo et al. 2008a). 
Their diversity is multiplied from the local scale up 
to the basin-wide level by the interplay of biotic and 
abiotic factors such as interaction among species, 
exposure, microtopography, island or mainland 
location and latitude. The presence of ecosystem 
engineering species also plays a crucial role here, 
where their disappearance is typically associated 
with radical changes in the structure of the as-
semblages. The genus Cystoseira, for example, 
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Fixed dune
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Annual vegetation
of drift lines Accretion

Erosion

Sand deposit

5m

10mFigure 4.6 | Cross-section of a sandy dune system33

33 http://www.marinespecies.org/traits/wiki/File:Sand_dunes.JPG
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includes low-shore canopy algae responsible for 
habitat formation for sessile invertebrates re-
quiring high humidity and low light levels, such 
as sponges and tunicates (Benedetti-Cecchi et 
al. 2001; Ceccherelli et al. 2005; Mangialajo et al. 
2008b). The loss of Cystoseira canopies results 
in disruptions to habitat complexity and species 
diversity patterns, and in the development of algal 
turfs associated with low-abundance invertebrate 
assemblages (Benedetti-Cecchi et al. 2001; Man-
gialajo et al. 2008b).

Mytilus galloprovincialis is an edible mussel, wide-
spread in intertidal and shallow subtidal areas 
throughout the Mediterranean Sea, where it is 
also aquacultured. The loss or reduction of natural  
M. galloprovincialis populations (Sarà et al. 2011) 
and of another autochthonous element of bivalve 
fauna, Mytilaster minimus (Sarà and de Pirro 2011), 
has been shown to produce changes in the asso-
ciated assemblages, enhanced when the contem-
porary reduction in canopy-forming algae occurs 
(Maggi et al. 2009). Although not an endangered 
species, its presence and abundance might be 
altered by the establishment of non-indigenous 
species like the mussel Brachidontes pharaonis 
(Sarà et al. 2008).

Mediterranean vermetid reefs are found where 
the temperature of surface coastal waters is no 
lower than 14°C (in winter) (Chemello and Silenzi 
2011). A typical vermetid reef is the outcome of 
complex synergistic building activity by the ver-
metid mollusc Dendropoma (Novastoa) petraeum 
and the encrusting red algae Neogoniolithon 
brassica-florida (Chemello and Silenzi 2011). Other 
species, such as the red algae Lithophyllum spp., 
support the process of bioconstruction. Vermetid 
reefs develop in the lower mesolittoral and upper 
infralittoral, on rocky coasts only, and precipitate 
an aragonite shell (Silenzi et al. 2004; Sisma-Ven-
tura et al. 2009). In addition to temperature and the 
type of substrate, the hydrodynamism of shallow 
water layers influences the distribution and size 
of these structures on a small scale, because ver-
metid platforms are rare along sheltered coasts 
(Chemello and Silenzi 2011). As for ocean acidifi-
cation (Section 2.2.9), although D. petraeum were 
able to reproduce and brood at high levels of CO2, 
recruitment success was found to be adversely 
affected (Milazzo et al. 2014).

Experimental work on the Mediterranean subtidal 
red alga Peyssonnelia squamaria shows that this 
species may benefit from ocean acidification, as its 
own nitrogen metabolism will be regulated (Yıldız 
2018). Among the engineering species, although 

vermetids are resilient to near-future pCO2 levels, 
it is likely that their reefs will not be able to with-
stand levels of acidification predicted for the end 
of this century, and the associated community will 
change as a result (Section 2.2.9).

Mediterranean subtidal rocky ecosystems have not 
been well studied. An initial current baseline and 
gradient of ecosystem structure was established 
for nearshore subtidal rocky reefs on a Mediter-
ranean scale, at 8 to 12 m water depths (Sala et 
al. 2012). This baseline study showed remarkable 
variation in the structure of rocky reef ecosystems 
and suggested that the healthiest shallow rocky 
reef ecosystems in the Mediterranean have both 
large fish and algal biomass. Protection level 
and primary production were the only variables 
significantly correlated to community biomass 
structure. Fish biomass was significantly larger in 
well-enforced no-take marine reserves, but there 
were no significant differences between multi-use 
marine protected areas (which allow some fishing) 
and open access areas at the regional scale (Sala 
et al. 2012).

Overall, intertidal systems are poorly represented 
in the socio-economic literature, and there ap-
pears to be low awareness of their value among 
stakeholders. Subsequently, conservation efforts 
for intertidal communities are minimal.

Coastal wetlands
Mediterranean coastal wetlands include a wide 
variety of natural habitats such as river deltas, 
coastal lagoons and salt marshes, intertidal 
wetlands, and coastal aquifers. Global warming 
and direct anthropogenic impacts, such as water 
extraction (more on land and sea use changes and 
practices in Sections 2.4 and 3.1.5.2), largely affect 
water budgets in Mediterranean wetlands, thereby 
increasing wetland salinities and isolation, and 
decreasing water depths, water quality and hy-
droperiods (duration of the flooding period) (Med-
iterranean Wetlands Observatory 2018). These 
wetland features are key elements that structure 
waterbird communities for instance (Ramírez et 
al. 2018). However, the ultimate and net conse-
quences of these dynamic conditions on key spe-
cies assemblages are largely unknown, although 
recent work indicates that waterbird communities, 
for example, tend to adapt to climate conditions 
(Gaget et al. 2018).

Seagrass meadows
Seagrass meadows in the Mediterranean Sea 
cover 1.35 to 5 million hectares, between 5 and 
17% of the worldwide seagrass habitat. The rate 
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of loss of seagrass is above 1.2% each year and 
up to 5% in the Mediterranean (Marba and Duarte 
2010). The Mediterranean Sea is home to four sea-
grass genera (Cymodocea, Halophila, Posidonia and 
Zostera) encompassing four indigenous species (C. 
nodosa, P. oceanica, Z. marina and Z. noltii) and one 
non-indigenous species (H. stipulacea) (Sghaier et 
al. 2011). The largest Mediterranean sublittoral 
area occupied by seagrasses is dominated by the 
endemic P. oceanica (neptune seagrass). It clonally 
reproduces in meadows and can spread up to 15 
km while being hundreds to thousands of years old. 
In certain areas its populations are significantly 
declining due to a combination of human-induced 
factors (Vohník et al. 2016). Posidonia oceanica is 
the most threatened seagrass habitat: almost half 
of the surveyed sites in the Mediterranean have 
suffered net density losses of over 20% in 10 years. 
These P. oceanica losses are directly linked to 
human activities: eutrophication from nutrient pol-
lution, alteration of coastal sediment balance and 
physical disturbances from trawling, anchoring of 
yachts, dredging, and other activities highlighted 
in Sections 2.3 and 2.4. Other non-human impacts 
include rising sea temperature (Section 2.2.8) and 
non-indigenous species (Section 2.5) (Claudet and 
Fraschetti 2010; Crooks et al. 2011).

The non-indigenous variety of Caulerpa racemosa, 
currently spreading in the Mediterranean Sea, 
was first discovered in the early 1990s near Tripoli 
Harbour in Libya (Nizamuddin 1991). It spreads 
rapidly, and is now found off the coasts of multiple 
countries around the Mediterranean Sea (Leba-
non, Tunisia, Libya, Egypt, Cyprus, Turkey, Greece, 
Malta, Croatia, Italy, France and Spain), and has 
reached the Canary Islands in the Atlantic Ocean 
(Verlaque et al. 2004; Bitar et al. 2017). Recent 
work has shown that this non-indigenous variety 
is C. racemosa var. cylindracea, which was intro-
duced from southwestern Australia (Verlaque 
et al. 2003). Long-range dispersal of the algae 
seems to be a result of human activities (e.g., 
dispersal by anchors, fishing). C. racemosa can 
inhabit a wide range of subtidal substrata (sand, 
mud, rocks, dead matte of seagrass, from 0 to 
50 m depths), and has the potential to expand its 
range around the entire coastline of the Mediter-
ranean Sea. C. racemosa modifies the density and 
diversity of benthic communities (Capiomont et 
al. 2005).

Early studies on spatial distribution and expansion 
of H. stipulacea had been focused on the northern 
Mediterranean - the spreading of H. stipulacea 
along the southern and southeastern Mediterra-
nean coasts was only noticed later (Lipkin 1975; 

Bitar et al. 2000, 2017; Abboud-Abi Saab et al. 
2003; Lakkis and Novel-Lakkis 2007; Verlaque et 
al. 2015).

Coastal lagoons and deltas
The small range of tides associated with low-speed 
currents has encouraged the establishment of 
lagoon or endogenic systems around much of the 
Mediterranean. Lagoons and deltas provide sup-
port for rich biodiversity, including vital habitats for 
bivalves, crustaceans, fish and birds. They provide 
a physical refuge from predation and are used as 
nursery and feeding areas for some endangered 
species (Franco et al. 2006; Le Pape et al. 2013; 
Escalas et al. 2015; Isnard et al. 2015). There are 
more than 100 coastal lagoons in the Mediterrane-
an, holding an important ecological role, and also 
providing essential goods and services for humans 
(read how the effects of climate change on coastal 
ecosystems could affect livelihood, culture and 
human rights in Section 5.3). Over 621 macrophyte 
species and 199 fish species are present in Atlan-
tic-Mediterranean lagoons (Pérez-Ruzafa et al. 
2011).

Due to their location between land and open sea, 
coastal lagoons are subject to strong anthropo-
genic pressures in parallel with climate change. 
Habitat destruction, pollution, water withdrawal, 
overexploitation and non-indigenous species are 
the main causes of their degradation (Newton 
et al. 2018). These pressures are responsible for 
major ecosystem alterations such as eutrophica-
tion, bacterial contamination, algal blooms (toxic, 
harmful or not), anoxia and fish killings. Further-
more, additional problems arise from coastal 
erosion, subsidence and effects related to extreme 
meteorological events, typical for the Mediterrane-
an (Aliaume et al. 2007).

In the Mediterranean, the largest coastal wetlands 
are found in delta areas like that of the Po (Italy), 
Nile (Egypt), Rhône (France) and Ebro (Spain) 
rivers (Section 3.1.1.3). Like most wetlands, deltas 
are diverse and ecologically important ecosystems 
(UNEP-MAP-RAC/SPA 2010). Deltas absorb runoff 
from both floods (from rivers) and storms (from 
lakes or the ocean). Deltas also filter water as 
it slowly makes its way through the delta’s dis-
tributary network. This can reduce the impact of 
pollution flowing from upstream. Plants such as 
lilies and hibiscus grow in deltas, as well as herbs 
such as wort, which are used in traditional medi-
cines. Many animals are indigenous to the shallow, 
shifting waters of a delta. Fish, crustaceans such 
as oysters, birds, insects are also part of a delta’s 
ecosystem (UNEP-MAP-RAC/SPA 2010; Medi-
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terranean Wetlands Observatory 2012). In deltaic 
areas and low-lying coastal plains climate change, 
particularly sea-level rise, is already considered 
as an important issue (Nicholls and Hoozemans 
1996), that significantly decreases the return 
periods of maximum water levels due to storm 
surges (Section 2.2.8 and Box 3.1.1). This has been 
discussed by Sánchez-Arcilla et al. (2008) for the 
Ebro delta where other phenomena are affecting 
deltaic behavior such as increases in inundation/
flooding, coastal erosion, salinity intrusion, and 
changes in wave climate (wave height, direction, 
and storminess).

Salt marshes
Salt marshes cover low-energy, intertidal shore-
lines worldwide and are among the most abundant 
and productive coastal ecosystems. Salt-marsh 
ecosystems provide a wide array of benefits to 
coastal populations, including shoreline protec-
tion, fishery support, water quality improvement, 
wildlife habitat provision, and carbon sequestration 
(Hansen and Reiss 2015). These are specialized 
habitats, characterized by high primary productiv-
ity and species diversity, which support a wide va-
riety of native flora and fauna, and also constitute 
important areas for wintering aquatic birds (Simas 
et al. 2001). Salt marshes protect lowlands from 
marine flooding by damping storms and waves and 
by slowing flows pushing inland (Allen 2000).

In the Mediterranean Basin, coastal salt marshes 
(Fig. 4.7) include various Mediterranean plant com-
munities of the classes Juncetea maritimi and Sal-
icornietea fruticosae which are under the influence 
of saline seawater. The vegetation is dominated by 
perennial and shrubby halophytes growing on the 
extreme upper shores of low sedimentary coasts, 
sheltered from the mechanical action of waves. 
Their habitat is especially diverse in the Iberian 
Peninsula and in southern Italy (Sicily, Apulia, 
Calabria) (Molina et al. 2003; Cutini et al. 2010; 
Sciandrello and Tomaselli 2014). In these parts, 
the habitat forms a mosaic of tall rushes mixed 
with shrubby and other herbaceous species, often 
with succulent stems and/or leaves, forming halo-
phytic shrublands and thickets. In soils with brack-
ish water, beds of reed and other tall helophytes 
grow. The habitat further includes Mediterranean 
halo-psammophile meadows (Plantaginion crassi-
foliae), humid halophilous moors with the shrubby 
stratum dominated by Artemisia coerulescens, 
halo-nitrophilous shrubby seablite thickets of 
Suaeda vera rarely inundated, shrub communities 
of Limoniastrum spp., and communities in the Dal-
matian coastal region, in somewhat drier habitats 
with less salt, which are not directly affected by 
waves and tides. On intertidal muds, cord grasses 
(Spartinion maritimae) may grow, but these are 
relatively rare in the Mediterranean (Molina et al. 
2003; Cutini et al. 2010; Sciandrello and Tomaselli 
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Figure 4.7 | Typical salt marsh zonation (modified from Bertness et al. 2002). Species along the tidal elevation gra-
dient are adapted to the inundation frequency, including extreme flooding and storm events. MLW: Mean Low Water; 
MHWN: Mean High Water of Neap tides; MHWS: Mean High Water Spring tide; HAT: Highest Astronomical Tide.
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2014). Saltmarshes include a wide diversity not 
only of vegetation (Ayyad and El-Ghareeh 1982), but 
also of plankton, crustaceans and fish species. The 
zooplankton structure and dynamics in permanent 
and temporary Mediterranean salt marshes were 
investigated, and the results found that although 
temporary and permanent basins show no differ-
ences in the most abundant zooplankton species, 
they differ in their zooplankton diversity, temporal 
pattern and size structure (Brucet et al. 2005). The 
same study also found that the presence of a sta-
ble fish population in the permanent salt marshes 
may explain the high values of zooplankton diver-
sity and the low densities of large zooplankton 
(Brucet et al. 2005).

In an assessment of the threat level of non-indige-
nous species on salt marshes of the southeastern 
Iberian Peninsula, the status of its habitats has 
been categorized as "particularly critical" as many 
of them were destroyed in the past, due to their 
transformation into cropland or by desiccation for 
fear of malaria (Al Hassan et al. 2016). In the Valen-
cia region (Spain), the coastline supports virtually 
all farming, much of the region’s industrial activity, 
and shelters large population centers. This, along 
with huge pressure from tourism (i.e., pressures 
related to water consumption, Section 3.1.2.3), have 
highly impacted salt marshes. These ecosystems 
house a specific flora of halophytes and their high 
specialization contributes to their vulnerability 
(Pétillon et al. 2005).

Coastal aquifers
In Mediterranean coastal systems, seawater 
intrusion is an important consequence of climate 
change and human action in coastal aquifers 
(Sherif and Singh 1999). Salinization alters the fun-
damental physicochemical nature of the soil-water 
environment, increasing ionic concentrations and 
altering chemical equilibria and mineral solubility 
(Herbert et al. 2015). Increased concentrations of 
solutes, especially sulfate, alter the biogeochem-
ical cycling of major elements including carbon, 
nitrogen, phosphorus, sulfur, iron, and silica (Her-
bert et al. 2015), which has negative impacts on 
photosynthetic pigments and global biomass (Par-
ihar et al. 2015). More about seawater intrusion 
in coastal aquifers can be found in Section 3.1.2.2. 
Three realistic scenarios (no change, sea rise of 
0.5 m, land side lowered by 0.5 m by water pump-
ing) were considered by Sherif and Singh (1999), 
who found that the Nile Delta aquifer is vulnerable 
to climate change and sea level rise. However, 
salinization tolerance can be found in some soil 
inhabitants like the spider Arctosa fulvolineate and 
the beetle Merizodus soledadinus, which survived 

salinity levels up to 70‰ (Pereira et al. 2019). Also, 
some littoral and terrestrial amphipod species can 
survive salinity levels up to 900 mOsm external 
concentration (Morritt 1988).

Risks from non-indigenous species

Phytoplankton
The Mediterranean Sea has experienced particu-
larly strong algal bloom events over the past 50 
years, mostly near the coast, in bays, lagoons, 
ports, beaches and estuaries, leading to deteri-
oration in water quality, increasing the mortality 
of fish and risks to human health due to specific 
toxins that could be released into the marine envi-
ronment and bio-accumulated through the marine 
trophic chain (Aligizaki 2009; Vlamis and Katikou 
2015; Griffith and Gobler 2020). Climate-induced 
changes in water temperature, stratification and 
other physical properties appear to strongly im-
pact the physiology and behavior of harmful algae 
bloom species, in terms of occurrence, physiology 
and toxin production (Section 2.3.4) in Mediterra-
nean coastal areas where already more frequent 
Harmful Algal Blooms “HABs”, and “novel” nui-
sance species have been recorded (Legrand and 
Casotti 2009).

The potential impact of climate-induced chang-
es to phytoplankton, and especially HABs, has 
raised attention in the scientific communities and 
directed their research in this field, mainly driven 
by human health concerns due to the potency of 
some algal toxins that are transferred through 
the marine food web (Turki et al. 2006; Drira et 
al. 2008; Mabrouk et al. 2012; Estevez et al. 2019). 
In monitoring southern Mediterranean countries, 
more than 64 dinoflagellate species were identified 
with a remarkable increase in spring and summer 
(Feki et al. 2016). Dinoflagellate abundance be-
tween tidal periods was variable and the highest 
abundance was detected in the slack period in the 
Gulf of Gabès (southern coast of Tunisia), suffer-
ing from the pressure of high urbanization and 
industrialization rates, as well as rapidly increas-
ing population growth rates. The dinoflagellates 
represent a major part of the eukaryotic primary 
production in marine ecosystems and the ability of 
several strains to cause shellfish poisoning and/
or to form resting cysts has led to considerable 
attention being paid to the diversity and distri-
bution of planktonic dinoflagellates in relation to 
environmental factors, hydrodynamism, nutrients 
and microalgae/biotoxins (Monti et al. 2007).

Ostreopsis (a dinoflagellate) blooms have become 
common in temperate areas as well, and regularly 
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occur in the Mediterranean Sea in the summer 
and autumn (Vila et al. 2001; Selina et al. 2014). 
In these areas, Ostreopsis was well-known as its 
blooms were often associated with harmful effects 
on the health of both humans and benthic marine 
organisms (Vila et al. 2001; Aligizaki and Nikolaidis 
2006). Additionally, Ostreopsis often appeared in 
association with other toxic or potentially toxic 
benthic dinoflagellates such as Prorocentrum spp., 
Amphidinium spp. and Coolia monotis in several 
Mediterranean areas (Monti et al. 2007; Mabrouk et 
al. 2012; Selina et al. 2014). The genus Ostreopsis 
includes several species producing various palytox-
in-like compounds with harmful effects on humans 
and marine fauna (Scalco et al. 2012). Species of 
this genus are regular members of the epiphytic 
community in tropical seas but their geographic 
range has shown an apparent expansion towards 
temperate regions of the Mediterranean Sea.

Jellyfish
Cassiopea andromeda is a non-indigenous jelly-
fish species that possibly takes advantage of the 
warming tendency in the Mediterranean Sea. 
Recently detected in Malta, Sicily and other areas 
beyond the Eastern Mediterranean Sea, this 
benthic jellyfish seems to be well adapted to mes-
otrophic waters near harbors and closed bays in 
where water has low hydrodynamism (Yokeş et al. 
2018). Due to the fact that many coastal areas all 
over the Mediterranean are no longer oligotrophic, 
the dispersion of this species may accelerate its 
path. The huge biomass reached in certain zones 
and its fast-growing features (Deidun 2018) may 
be a problem for fisheries, coastal tourism and 
management.

Other non-indigenous jellyfishes are also increas-
ing their abundance in the warming Mediterranean 
Sea. The dreaded cubomedusa is typical of tropical 
seas, such as around the Australian Great Barrier 
Reef or the Philippines. Cubozoans, or "box jelly-
fish", are considered to be the cnidarian group’s 
most dangerous, with an extremely painful sting 
that changes the lives of dozens of Australians 
every year. During the summer of 2008, a great 
abundance of a cubomedusa occurred along the 
Spanish coast, spotted off the beaches of Denia, 
Alicante, particularly Carybdea marsupialis, a small 
jellyfish species. It is rare in the Mediterranean 
Sea, so had never been considered to be a species 
that would form a major proliferation, yet during 
the summer of 2008 the Red Cross reported a high 
number of stinging incidents in this area due, no 
doubt, to this almost imperceptible, transparent 
and seemingly harmless jellyfish forming dense 
swarms in the breakers (Kingsford et al. 2018).

It is possible that C. marsupialis appeared because 
of the changing conditions throughout the water 
column, but the information about its distribution 
or what factors influence its life cycle is still limited 
(Canepa et al. 2017). Sea warming seems to be one 
of the key factors explaining its acute proliferation, 
and is likely the reason of the already changing 
trophic interaction map of the Mediterranean Sea 
due, in part, to climate change. Water temperature, 
together with quantity and quality of available food 
resources, are known as major drivers of gonadal 
outputs (Harland et al. 1992; Ben-David-Zaslow 
and Benayahu 1999). In general, jellyfish sexual and 
asexual reproduction is known to be influenced by 
warming. Some studies have shown that elevated 
temperature by itself or in combination with high 
feeding frequency (due to raised zooplankton prey 
abundance) increased budding rate and bud size 
in Aurelia polyps populations worldwide (Hočvar et 
al. 2018).

Fish
The establishment of the lionfish (Pterois sp.) and 
the blowfish (Lagocephalus sp.) in Mediterranean 
waters can be envisaged as a paradigm of how 
climate change helps the dispersion of tropical spe-
cies in a warm temperate sea (Section 2.5.1). The li-
onfish, for example, is a predator that has almost no 
controlling species (other fishes, sharks, etc.) and 
is a generalist, living in all shallow and mesophotic 
zones. The species has high reproductive and dis-
persal capacities, a massive production of well-pro-
tected eggs all year long and a fast spread and high 
larval survival rates (Betancur et al. 2011). In the 
Eastern Mediterranean Sea, these non-indigenous 
species have been introduced from the Red Sea, 
and have been documented in many areas (Bariche 
et al. 2013, 2017; Kletou et al. 2016). The blowfish 
(Lagocephalus sceleratus) is another example, 
with dispersion apparently faster in certain zones 
(Boustany et al. 2015; Kara et al. 2015). One of the 
first records indicate fast mobility from the original 
source (the Suez Canal) (Akyol et al. 2005; Kara et 
al. 2015), and since its first recorded sighting, it has 
been detected even in coastal waters in southern 
Italy (Azzurro et al. 2014). All the non-indigenous 
vagile fauna would have a very restricted dispersion 
if the water column temperature conditions were 
stable, with a clear marked low temperature during 
the autumn and winter, but changing conditions  
may be favoring its definitive establishment in 
Mediterranean waters (Bianchi and Morri 2003). 
The rapid spread of some of these species will be a  
serious problem for fisheries and trophic rela-
tionships in coastal areas, causing the likely local  
extinction of some species that may be preys of 
these generalist fish species (Coro et al. 2018).
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Plants
Among numerous threats, the pressure of non- 
indigenous plants has strong effects in these  
fragmented and linear ecosystems. Dittrichia 
viscosa is a perennial, 40-130 cm high plant, very 
common in the western Mediterranean but also 
found in its eastern part (Al Hassan et al. 2016). 
The species shows a remarkable pioneering 
character, and in recent decades largely expanded 
its range in Mediterranean countries, possibly 
due to increased human disturbances (Wacquant 
1990; Mateo et al. 2013). Its capability to colonize 
new habitats and threaten biodiversity has been 
well-documented (Wacquant 1990) and related to 
characteristics such as its phenotypic plasticity 
(Wacquant and Bouab 1983), high stress tolerance 
(Curadi et al. 2005) and resistance to chemical pol-
lution (Murciego et al. 2007; Fernández et al. 2013), 
as well as to its allelopathic effects (Omezzine et 
al. 2011). In the last 50 years, D. viscosa has be-
come an invader in the NW Mediterranean region, 
since it increased its ecological range under dis-
turbance pressure and is colonizing new habitats 
(Wacquant 1990; Boonne et al. 1992; Wacquant 
and Picard 1992; Mateo et al. 2013). The species’ 
recent expansion in the Iberian Peninsula has also 
been correlated to temperature increases due to 
accelerated global warming (Vesperinas et al. 
2001). Although D. viscosa cannot directly compete 
with true halophytes in highly saline environments, 
it is nevertheless quite stress tolerant and there-
fore presents a threat to the vegetation located on 
salt marsh borders, where several endemic and 
threatened species are found in the area of study 
conducted by Al Hassan et al. (2016).

Other non-indigenous species
Some non-indigenous eco-engineering species are 
also favored by sea warming in the Mediterranean 
Sea (Section 2.5). Sea forests are living three-di-
mensional structures, similar to terrestrial forests 
but basically comprised of seaweeds, seagrasses, 
sponges, cnidarians, bryozoans, ascidians and 
other sessile organisms in the ocean benthos 
(Rossi et al. 2017a). These forests are dominated by 
ecosystem engineering species, organisms which 
directly or indirectly modulate the availability of 
resources to other species, causing changes to 
the physical condition of biotic or abiotic materials 
(Jones et al. 1994). In the case of the non-indige-
nous species, we can highlight two different case 
studies of non-indigenous eco-engineering spe-
cies that may be already changing the benthic sea-
scape in many areas of the Mediterranean Sea due 
to the suitable conditions for their expansion. The 
first case is represented by the seaweed Caulerpa 
cylindracea. This chlorophyte has been identified 

as one of the most successful bioinvaders (Mon-
tefalcone et al. 2015). This species has been much 
more successful with respect to Caulerpa taxifolia, 
the so-called killer algae. In several areas, it is 
replacing other algae, phanerogams and sessile 
animals creating a new seascape in which the 
biodiversity and biomass are rapidly changing 
(Alomar et al. 2016).

A different case study is that of myxotrophic 
scleractinians that are more present toward the 
northern and western Mediterranean Sea. Oculina 
patagonica has been recorded in many Mediter-
ranean areas but was not present in northern  
Spanish coastal areas until recently (Leydet et al. 
2018). This species seems to be rapidly adapting 
to new temperature trends, a factor that drives 
new populations to quickly move north. Originating 
from the south, this species is now an invader 
that proliferates, replacing other native species 
in shallow waters, where sea urchin barrens may 
be essential to understand their capability to cope 
with new spaces (Coma et al. 2011). The presence 
of this species in northern areas seems to be  
correlated with sea warming, but has clear pho-
tobiological limits due to temperature factors 
that have to be considered (Rodolfo-Metalpa et al. 
2014).

4.2.1.2 Past changes

Although human activity is considered as a 
major driving force affecting the distribution and 
dynamics of Mediterranean ecosystems, the full 
consequences of projected climate variability 
and relative sea-level changes on fragile coastal 
ecosystems for the next century are still unknown. 
It is unclear how these waterfront ecosystems, as 
well as the services they provide, can be sustained, 
when relative sea-level rise and global warming 
are expected to exert even greater pressures in the 
near future (drought, habitat degradation and ac-
celerated shoreline retreat) (Kaniewski et al. 2014). 
The most suitable archives for such paleorecon-
structions are located in coastal wetlands that are 
highly vulnerable to global warming and the rapid 
rise in sea level, as they are highly exposed to 
processes such as flooding, subsidence, sediment 
scarcity and coastline erosion (Anthony et al. 2014; 
Wong et al. 2014) (Chapter 2).

Response of coastal ecosystems to past 
changes in sea level

During the Holocene period, sea level worldwide 
exhibited significant fluctuations, mostly respond-
ing to the advance and retreat of the continental 
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ice sheets (Lambeck et al. 2010). In the Mediter-
ranean, regional sea level has risen continuously 
for the whole Holocene with a sudden slowdown at 
~7.5 ka BP and a further deceleration during the 
last ~4.0 ka BP, after which time observed regional 
sea-level changes have mainly related to variability 
in isostatic adjustment (Galili et al. 2005; Vacchi et 
al. 2016). This mid-Holocene sea level stabilization 
had a major influence on fluvial sedimentation in 
coastal regions, and the formation of many coastal 
wetlands such as flood plains, coastal lagoons and 
deltas can be traced back to this period (Pavlopou-
los et al. 2006; Fouache et al. 2008; Carmona et al. 
2016). Although the stabilization of sea level and 
availability of sediment are important variables in 
this process, the palaeogeography of the lagoon 
environment and specific fluvial and marine sed-
imentary dynamics are also important variables in 
each case study (Huntley 2001).

Coastal wetland-based archives have an exception-
al scientific potential to observe past ecosystem 
changes and identify key thresholds for particular 
ecosystems facing sea-level rise. In northeastern 
Spain, a reconstruction of past ecosystems was 
presented for the Castelló lagoon using ostracods, 
diatoms, and pollen and non-pollen palynomorphs 
as bio-indicators of marine vs freshwater influenc-
es (Ejarque et al. 2016). This study pointed out the 
strong link between the lagoon ecosystem, chang-
ing sea-level and the historical anthropogenic 
pressure. From the late Neolithic to the medieval 
period, dynamics of the lagoon ecosystem were 
mainly driven by changing marine influence. From 
~1,550 and ~150 cal BC maximum marine flooding 
hampered agropastoral activities. After the Me-
dieval period, societies actively controlled lagoon 
dynamics and became a major agent of landscape 
transformation. The removal of littoral woodlands 
after the 8th century was followed by the expansion 
of agrarian and industrial activities. The expansion 
of the milling industry and of agricultural lands 
led to the channelization of the river Muga into 
the lagoon after ~1,250 cal AD, which caused its 
transformation into a freshwater lake ecosystem 
(Ejarque et al. 2016).

In the Corsican back-barrier wetlands, a study 
of the fossil Coleoptera in two sediment cores 
supplemented by pollen and geochemical data 
show that 60% of past wetland beetle fauna at the 
Grecu pond became locally extinct because of the 
increase in salinity caused by marine intrusions 
(Poher et al. 2018). Most of this diversity loss 
occurred 3,700 years ago, when relative sea-level 
reported in the region rose. Regarding the Cannuta 
marsh, results of the same study show evolution 

from a brackish lagoon to a freshwater environ-
ment marked by diversification of wetland beetle 
fauna 1,000 years ago, which is possibly due to 
relative sea-level stability and floodplain progra-
dation (Poher et al. 2018).

In the Eastern Mediterranean, the rapid response 
of the Alikes Lagoon of Zakynthos Island ecosys-
tem has been attributed from 8,540 and 3,400 BP  
to climate-related events such as storms or tsu-
namis where marine characteristics dominate 
(Avramidis et al. 2013). Furthermore, the study of 
Kaniewski et al. (2014) shows that Haifa Bay un-
derwent a landward sea invasion, with a maximum 
sea penetration 4,000 years ago. The main conse-
quences of the sea invasion were a retreat of the 
coastal forest, a loss of resilience and disappear-
ance of the initial local biogeographic zonation. The 
forest replacement by a thorny shrub-steppe and 
then by an open-steppe appeared to follow, rather 
than cause, failure of tree regeneration. Due to  
the intrusion of the saline water table in freshwa-
ter streams, the freshwater wetland associated 
with the Na’aman River was deeply impacted  
after 4,000 cal. years, with a fall in hygrophil-
ous-hydrophilous herbs. The subsequent coastal 
progradation that started at 3,400-3,300 cal yr BP 
left an eroded sandy-salty area, colonized by a 
steppe vegetation that became dominant until 
the end of the shoreline retreat (2,900 cal yr BP). 
A similar process was observed in the Salt Lake 
of Larnaca, Cyprus, where a shift from sheltered 
marine to lagoon environments produced an eco-
logical change with a strong increase in xerophytic 
vegetation-types colonizing the shores that were 
no longer washed by seawater (Kaniewski et al. 
2013b). The 3.2 K yr BP drought event (Schilman 
et al. 2001a; Kaniewski et al. 2013a) caused a dra-
matic demise in wooded ecosystems unrecovered 
until after 2,850 cal yr BP. Due to human-induced 
modification during the last ~200 years, it retreat-
ed by 15 m (Zviely et al. 2009). This new phase of 
sea-level invasion is well attested by high values of 
steppe vegetation and a renewed drop in hygrophil-
ous-hydrophilous herbs. This suggests that similar 
stresses generate analogous biological processes, 
whatever the period under consideration.

Mediterranean coastal ecosystems, including 
fauna and flora components, are very sensitive 
to sea-level changes. The mid- to late Holocene 
changes in sea-level caused strong biological 
stresses and major ecological alterations provid-
ing a foreshadowing of potential future diversity 
and community changes along Mediterranean 
coastal wetland ecosystems and a model to un-
derstand the consequences of sea-level rise for 
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the next century (Marcos and Tsimplis 2008). This 
retrospective approach encompassing historical 
anthropogenic pressure also clearly indicates 
that for efficient management of coastal habitats, 
anthropogenic pressures linked to urban develop-
ment (Section 5.1.1.3) must be reduced in order to 
mitigate the predicted effects of global change.

Response of coastal ecosystems to past 
climate variability

In addition to eustatic sea level curves and coastal 
geomorphological dynamics, recent research has 
revealed that the climate variability of the Holocene 
impacted the Mediterranean coastal ecosystems 
particularly through storms and floods (Carmona 
et al. 2016). Storm surges, leading to catastrophic 
coastal flooding, are amongst the most feared nat-
ural hazards due to the high population densities 
and economic importance of coastal areas. Strong 
evidence has been provided for enhanced periods 
of storms that caused coastal flooding over the last 
4,500 years as a result of solar activity, acting on 
cycles of around 2,200-yr and 230-yr (Kaniewski et 
al. 2016). These storm surges were characterized 
by inland intrusion of ostracods and dinoflagellate 
cysts, while the intrusion of saline water into the 
freshwater-fed plains greatly affected terrestrial 
ecosystems leading to land fragmentation by salt 
encroachment (Kaniewski et al. 2016). An important 
part of paleoenvironmental Holocene research has 
focused on identifying phases of high frequency and 
magnitude of floods related to climate variability 
(Thorndycraft and Benito 2006; Benito et al. 2008, 
2015). In the Western Mediterranean region, periods 
with more frequent heavy-rain flooding events coin-
cide with transitions to cooler and wetter climates, 
while flood frequency in northern Africa is linked to 
drier climate and in the eastern Mediterranean, to 
wetter conditions (Benito et al. 2015). Some studies 
hypothesized that these have been driven by internal 
modes of atmospheric and oceanic changes such 
as the East Atlantic pattern, the NAO, and thermo-
haline circulation (Degeai et al. 2017). However, the 
effect of these flood episodes on coastal ecosystems 
is much less documented and needs to be further 
addressed in high time-resolution studies.

Based on these findings, short-term climate 
events, which are driven by high frequency exter-
nal and internal forcing factors, are superimposed 
on anthropogenic-driven factors. This complex 
interaction may either accentuate or attenuate the 
effect of current and future global warming. For in-
stance, climate models are predicting a decrease 
in Mediterranean storms in the second half of the 
21st century while the study by Kaniewski et al. 

(2016) suggests that a decrease in solar activity will 
increase and intensify the risk of frequent flooding 
in coastal areas.

4.2.2 Projected vulnerabilities and risks

4.2.2.1  Projections and risks based on 
biological groups

Phytoplankton
Climate change consequences, particularly in-
creasing temperatures (Section 2.2.4), decreasing 
nutrient replenishment (Section 2.3), and ocean 
acidification (Section 2.2.9), are expected to cause 
changes in plankton communities at different lev-
els, from phenology and biomass to communi-
ty structure. For example, a shift in phytoplank-
ton community, dominance of smaller species 
(picophytoplankton and nanoflagellates) and a de-
crease in diatoms, with an expected decrease in 
the biomass of calcifying organisms such as coc-
colithophorids are some of the expected outcomes 
(Dias et al. 2010; The MerMex Group et al. 2011). 
There are still many uncertainties when it comes 
to the impact of sea warming and acidification on 
primary production in the Mediterranean, but it is 
clear that physico-chemical changes will affect the 
magnitude, timing and composition of phytoplank-
ton blooms, with associated changes in the sea-
sonal distribution of zooplankton (Moullec et al.) 
(Section 4.1.2). Ocean acidification combined with 
warming and deoxygenation, has been shown to 
cause negative effects on marine animals and to 
stimulate the production of primary producers, 
particularly in coastal waters that do not experi-
ence stratification or nutrient limitation (Gao et  
al. 2020). The associated decreased predato-
ry pressure has the potential to further increase  
primary production. The increased primary pro-
duction will stimulate the respiration of bacte-
ria and thus intensify the hypoxia and low pH zone 
(Gao et al. 2020).

To understand how climate variation controls 
phyto-and zooplankton dynamics and possibly 
affects artisanal and small-scale fisheries ex-
ploiting areas near the coast, Goffart et al. (2017) 
used a unique long-term (1979-2014) time series 
obtained from a Mediterranean coastal area unbi-
ased by local anthropogenic pressure in the Bay 
of Calvi, Corsica. They identified threshold values 
of physical variables below and above which they 
strongly impact nutrient availability, phyto- and 
zooplankton bloom characteristics and season-
ality succession of plankton functional groups, 
stressing the importance of winter conditions in 
determining the state of Mediterranean pelagic 
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ecosystems, and highlighting that the thresholds 
obtained from their long-term time series provide 
key information for improving model scenarios of 
the impact of climate change on Mediterranean 
ecosystems.

The functional traits and geographic distribution 
of 106 copepod species were used to estimate the 
zooplankton functional diversity of Mediterrane-
an surface assemblages for the 1965–1994 and 
2069–2098 periods (Benedetti et al. 2018). Multiple 
environmental niche models were trained at the 
global scale to project species habitat suitability in 
the Mediterranean Sea and assess their sensitivity 
to climate change predicted by several scenarios. 
A relatively low decrease in species richness is 
predicted for 97% of the Mediterranean Basin, with 
higher losses in the eastern regions (Benedetti et 
al. 2018). The results of the same study show that 
climate change is not expected to alter copepod 
functional traits distribution in the Mediterranean 
Sea, as the most and the least sensitive species 
are functionally redundant. Such redundancy 
should buffer the loss of ecosystem functions in 
Mediterranean zooplankton assemblages induced 
by climate change. Since the most negatively 
impacted species are affiliated with temperate 
regimes and share Atlantic biogeographic origins, 
the results of Benedetti et al. (2018) are in line 
with the hypothesis of increasingly more tropical 
Mediterranean communities (Section 2.6.2.3).

Fish
In the Mediterranean Sea, a reduction in primary 
production linked to an increase in sea surface 

temperature (see previous sub-sections in this 
chapter and Section 3.2.2.2) could have negative 
impacts on fisheries catch and could exacerbate 
current trends of overfishing. Projected changes 
in primary and secondary productions suggest 
that trophic mismatches between fish pre-recruits 
and their prey could increase in the future, with 
negative consequences for recruitment success, 
sustainable fisheries and conservation of biodi-
versity (Lejeusne et al. 2010; Stergiou et al. 2016). 
Also, jellyfish outbreaks (e.g., P. noctiluca) may 
become more frequent in the Mediterranean Basin 
(see previous sub-sections) and may extend over a 
longer period of the year than previously, causing 
alteration of the pelagic food web and thereby 
reducing fishery production (Licandro et al. 2010).

Using Bioclimatic Envelope Models (BEMs), the 
potential future climatic niches of 288 coastal  
Mediterranean fish species were projected based 
on a global warming scenario, then the spe-
cies-level projections were geographically aggre-
gated to analyze the projected changes in species 
richness and composition (Albouy et al. 2012). The 
results show that projected changes in assemblage  
composition are caused by different processes 
(species replacement vs. nestedness) in several 
areas of the Mediterranean Sea, and that the 
coastal fish fauna in several regions of the Med-
iterranean Sea could experience a "cul-de-sac" 
effect if exposed to climate warming (Albouy et al. 
2012) (Section 4.1.2.2.).

Fish species ranges are expected to move north-
wards and eastwards, and most of the Gulf of Lion 
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as well as the Adriatic and Aegean sub-basins are 
projected to experience a net decrease in species 
richness resulting from a loss of thermal niches for 
numerous fish that are not balanced by the arrival of 
other species from the south by the end of the 21st 
century (Fig. 4.8). In a best-case scenario, remain-
ing or arriving species in local assemblages after 
global change impact would share combinations 
of functional traits with lost species, thereby main-
taining ecosystem functioning, while in the worst-
case scenario, lost species would have functional 
traits distinct from those of remaining or arriving 
species, hence the functions they support would go 
extinct and would imperil ecosystem functioning. 
Overall, the joint exploration of changes in species 
richness and composition coupled with the distinc-
tion between species replacement and nestedness 
bears important information for understanding the 
nature of climate change impacts on biodiversity 
(Albouy et al. 2012).

Lionfish (Pterois sp.) and blowfish (Lagocephalus 
sp.) in Mediterranean waters reflect how climate 
change helps the dispersion of tropical species 
in a warm temperate sea (Section 4.2.1.1). The 
question is when these species will migrate to 
the Western Mediterranean Sea. Johnston and 
Purkis (2014) argue that this is unlikely to happen. 
The connectivity between different areas is not 
the same as in the Caribbean for example, and 
the shifts in temperature need to be much more 
dramatic to make this invasion possible during the 
coming decades. However, the generalist behavior 
of this species may be one of the essential points 
to understanding its future success if a shift of 1 
to 1.5 °C occurs in surface waters in some areas. 
This alien species from warm tropical waters may 
present a problem for other species because of 
the sea warming tendency (Section 2.2.8). It is not 
only a problem of the alien species per se, but a 
problem of shift from warm temperate to tropical 
trophic chain structures. The rapid spread of 
some of these species will be a serious problem 
for fisheries and trophic relationships in coastal 
areas, as the local extinction of some species that 
may be preys of these generalist fishes is very 
likely (Coro et al. 2018).

All the above-mentioned projections highlight the 
pressures that could increase the risk to fish and 
their habitats, namely for commercially valuable 
euryhaline coastal fish species (i.e., sole, seabass, 
seabream, mullet, eel) in coastal nursery sites 
such as lagoons, estuaries, and deltas. These 
pressures vary from rising temperatures that 
could exacerbate the occurrence of HABs (i.e., 
ciguatoxins, produced by dinoflagellates) and 

thus the distribution of biotoxins and pathogens 
(i.e., Vibrio bacteria) (Lloret et al. 2016), to the 
depletion of oxygen that may cause suffocation, 
which kills fish, to plastic pollution (Barange et 
al. 2018). A likely decrease in connectivity between 
neighboring ecosystems within the Mediterranean 
is expected because of a decrease in the size of 
spawning areas and an increase in larval retention 
on smaller areas of the continental shelf (Barange 
et al. 2018). In addition to warming and ocean 
acidification, changes to fisheries’ structures will 
contribute to the disappearance and modifica-
tion of fragile and long-lived species that create 
biogenic structures or seagrass meadows, which 
provide important ecosystem services as well 
(Jordà et al. 2012).

Seaweed
Other non-indigenous species are also favored 
by sea warming in the Mediterranean Sea. For 
the non-indigenous seaweed Caulerpa cylindracea 
(Section 4.2.1.1), the effects on the quality and 
quantity of available seston may be positive, also 
changing biogeochemical cycles and benthic-pe-
lagic coupling relationships (Rizzo et al. 2017). 
Warming and acidification may be a perfect match 
for these fleshy algae (Comeau and Cornwall 
2017), promoting its proliferation, in part, by the 
resistance to sedimentation processes, increased 
in many areas due to direct human impact (Alo-
mar et al. 2016). Several algae species’ dispersal 
may be thus enhanced not only by direct climate 
change effects but also by direct human impacts 
in coastal areas.

Corals
As for myxotrophic scleractinians, such as Oculina 
patagonica, projected global warming is likely to 
cause a gradual contraction in their distribution 
zones, where temperatures are too high due to 
their temperature constraints (Rodolfo-Metalpa et 
al. 2014). Higher transparency of water and rising 
temperatures in surface waters may also be the 
key to understanding its successful proliferation. 
Myxotrophy needs a photosynthetic component 
that is not present in Mediterranean waters as it is 
in tropical waters: light (water transparency) and 
temperature, combined, are the key to understand-
ing high photosynthetic performance (Schubert 
et al. 2017). Some of these species from tropical 
or subtropical waters, may be favored by the new 
conditions of the water column in the Mediterra-
nean Sea, but not all of them. It is possible that 
Indo-Pacific species (Lessepsian species), adapt-
ed to higher temperatures, have more potential of 
spreading over Mediterranean shallow areas over 
the coming decades.
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The reproductive features and the larval release 
strategy of octocorals species make them highly 
sensitive to global climate change (especially in 
shallow areas, above 40 m depths). Recent mod-
els highlight that water stratification in the Med-
iterranean Sea may last for longer periods and 
warmer waters may stress non-mobile organisms 
(Galli et al. 2017). Whether the food availability for 
benthic suspension feeders would be affected 
by elevated temperatures is not clear, but it has 
been shown that under anomalous warming 
episodes in shallow water adults of P. clavate, E. 
singularis and C. rubrum suffer from partial or 
total tissue loss (Garrabou et al. 2001; Linares et 
al. 2005, 2008; Rossi and Tsounis 2007). Also, the 
new recruit mortality in shallow populations is 
very high when compared to deeper populations 
(Bramanti et al. 2005; Linares et al. 2008; Coma 
et al. 2009). Furthermore, mother care (i.e., the 
energy invested by mother gorgonian colonies 
to the offspring) will be crucial to understanding 
the potential survival in a warmer and less pro-
ductive ocean (Viladrich et al. 2016, 2017). Within 
the context of global change, there is a risk that 
the period of trophic crisis might be significantly 
prolonged to the point that the capacity of energy 
reserves in lecitotrophic larvae would not last 
until the arrival of favorable feeding conditions in 
early autumn. This situation could be even worse 
if the spawning of these species is triggered 
earlier by the increase in temperature. Asexual 
reproduction may enable some individuals to 
survive catastrophic mortality events such as 
warming episodes and then expand following the 
disturbance (Lasker and Coffroth 1999). However, 
chronic stress that reduces recruitment will have 
less obvious effects on these clonal taxa and may 
be the key to understanding future composition 
of benthic communities. Climate change could 
lead to partial recruitment failure in the affected 
species, with major changes in the population 
structure and dynamics, and a drastic change in 
ecosystem functioning. These combined factors 
may be crucial to understanding how seascapes 
will change in shallow Mediterranean benthic 
communities.

Non-indigenous species in the Mediterranean 
Sea may be invasive or simply immigrant species 
(Section 2.5). The new suitable conditions are key to 
understanding the transition observed in coastal 
and offshore areas. Higher temperatures that 
may be bad for native species (adapted to clear 
seasonal trends and certain limits of temperature 
and light), may be positive for the incoming species 
that are stressed by the same rising temperature 
phenomenon in their native areas.

4.2.2.2  Projections and risks based on 
key natural habitats

Sandy beaches/dunes
The impacts from reshaped coastlines as a result 
of sea level rise and changes in wave climate were 
assessed via regional climate models, indicating 
that beaches of the Balearic Islands (western 
Mediterranean) would suffer a coastal retreat 
of 7 to 50 m, equivalent to half of the present-
day aerial beach surface, under the RCP4.5 and 
RCP8.5 climate scenarios (Enríquez et al. 2017). 
Also, beach erosion due to sea level rise in the 
Aegean archipelago (eastern Mediterranean) was 
evaluated: under a mean sea level rise of 0.5 m 
(RCP4.5), a storm-induced sea level rise of 0.6 m 
is projected to result in complete erosion of 31 
to 88% of all beaches (29 to 87% of beaches are 
currently fronting coastal infrastructure and 
assets), at least temporarily (Monioudi et al. 2017). 
The projections of the same study suggest a very 
considerable risk, which will require significant 
effort, financial resources and policies/regulation 
in order to protect/maintain the critical economic 
resources of the Aegean archipelago (Monioudi et 
al. 2017). Biodiversity loss will be the outcome of 
the negative pressures driven by climate change 
consequences, which would hamper beach 
ecosystem resilience (Scapini et al. 2019). The 
specificity of sandy beaches as narrow ecotones 
between sea and land may be lost under climate 
change pressure, adversely affecting fine-tuned 
macrofaunal adaptations and therefore ecosystem 
functioning (Scapini et al. 2019). In comparing two 
coastal plant communities, one in Montenegro 
and another in Albania, it is demonstrated that 
the less disturbed beach had zonation very similar 
to potential vegetation, while plant communities 
of the touristic beach were fragmented or even 
substituted by replacement communities (Šilc et 
al. 2016).

The way habitat distribution will be altered under 
the effects of two climate change scenarios were 
analyzed, and the efficiency of the current Italian 
network of protected areas in the future after 
distribution shifts was evaluated in Prisco et al. 
(2013). According to this latter study the range 
of habitats is currently sufficiently covered by 
protected areas, achieving the conservation target. 
However, according to their predictions, protection 
levels for mobile and fixed dune habitats is 
predicted to drop drastically under climate change 
(Prisco et al. 2013).

After combining a digital terrain model with 5 years 
of nest survey data describing location and clutch 
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depth, Varela et al. (2019) identified (a) regions 
with the highest nest densities for the loggerhead 
(Caretta caretta) and green turtle (Chelonia mydas), 
(b) nest elevation by species and beach, and (c) the 
estimated proportion of nests inundated under 
each sea-level rise scenario. On average, green 
turtles nested at higher elevations than logger-
heads. However, because green turtles dig deeper 
nests than loggerheads, these were at similar risk 
of inundation. For a sea-level rise of 1.2 m, a loss 
of 67.3% for loggerhead turtle nests and 59.1% for 
green turtle nests were estimated (Varela et al. 
2019). Existing natural and artificial barriers may 
affect the ability of these nesting habitats to re-
main suitable for nesting through beach migration.

Rocky shores
The prolonged desiccation events on the south-
eastern rocky shores of the Mediterranean were 
characterized, and their potential ecological 
impacts on the unique intertidal Mediterranean 
Sea ecosystem of vermetid reefs were examined 
(from 2012 to 2014) by Zamir et al. (2018). This 
study shows that desiccation stress has already 
increased on southeastern Mediterranean verme-
tid reef ecological communities, and if this trend 
continues, further increases in aerial exposure and 
desiccation stress could be expected, which could 
have long-term impacts on this fragile ecosystem 
(Zamir et al. 2018). For the vermitid Dendropoma 
petraeum, long-term exposure to acidified con-
ditions predicted for the year 2100 and beyond 
caused shell dissolution and a significant increase 
in shell Mg content. Unless CO2 emissions are 
reduced and conservation measures taken, these 
reefs are in danger of extinction within this century 
(Zamir et al. 2018), with significant ecological and 
socio-economic ramifications for coastal systems 
(Milazzo et al. 2014).

The narrow range of the intertidal in the Mediterra-
nean has particular implications for its resilience 
to climate change and sea level rise. For example, 
in the Mediterranean, the potential harsh effects of 
tidal aerial exposure on the ecological responses 
of intertidal organisms is, in fact, usually buffered 
by wave splashing (Sarà et al. 2011). This might 
help limit the otherwise detrimental impacts of 
increasing aerial temperature and dryness on 
organisms. However, the limited amplitude of the 
Mediterranean intertidal area implies a very small 
optimal range of environmental features. As such, 
some species may be able to adapt and migrate as 
sea levels rise, but others will not. This knowledge 
is not definitive as historical exploitation of the 
Mediterranean Sea and the absence of rigorous 
baselines makes it difficult to evaluate the current 

health of these ecosystems and the efficacy of 
conservation actions at the ecosystem level (Sala 
et al. 2012).

Coastal wetlands
The extent of wetland salinization and thus its 
effect on Mediterranean wetlands are still poorly 
known. Typically, increased salt and sulfide con-
centrations induce physiological stress in wetland 
biota and ultimately can result in significant shifts 
in wetland communities and their associated eco-
system functions (Herbert et al. 2015). In a large-
scale outdoor mesocosm experiment, the effects 
of salinity on successional patterns, diversity, 
and relative abundance of Camargue (southern 
France) temporary pool crustaceans were studied 
(Waterkeyn et al. 2010). Salinity significantly al-
tered crustacean communities hatching from the 
resting egg bank through a number of direct and 
indirect effects. Salinity had a significant negative 
effect on the establishment of large branchiopods 
and copepods. Both the diversity and density of 
cladocerans, especially chydorids, were positively 
related to salinity, possibly due to the absence of 
biotic interactions with large branchiopods at the 
highest salinity values (Waterkeyn et al. 2010). In 
the same study, the authors hypothesize that the 
salinity-mediated presence of the large branchi-
opod keystone group can shift the whole wetland 
regime from a zooplankton-rich clear-water state 
to a zooplankton-poor turbid state. Crustacean 
succession was significantly altered by salinity, by 
slowed development rates, population growth or 
maturation rates of some species. This suggests 
that in addition to salinity changes, any alteration 
of wetland hydroperiod (e.g., through aridification 
or poor water management) could have a synergis-
tic effect on community structure and the diversity 
of invertebrate communities, including some key-
stone species.

Based on Multi-Criteria Decision Analysis tech-
niques, it is documented that wetlands and ter-
restrial ecosystems have the highest relative risk 
scores in the Tunisian coastal zone of the Gulf of 
Gabes (Rizzi et al. 2016). A combination was made 
for regular sampling of waterbird presence through 
one annual cycle with in-situ data on relevant en-
vironmental predictors of waterbird distribution to 
model habitat selection for 69 species in a typical 
Mediterranean wetland network in southwestern 
Spain (Ramírez et al. 2018). Species associations 
with environmental features were subsequently 
used to predict changes in habitat suitability for 
each species under three climate change sce-
narios (encompassing changes in environmental 
predictors that ranged from 10% to 50% change as 
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predicted by regional climate models). Waterbirds 
distributed themselves unevenly throughout en-
vironmental gradients and water salinity was the 
most important gradient structuring the distribu-
tion of the community. Environmental suitability for 
the guilds of diving birds and vegetation gleaners 
will decline in future climate scenarios, while many 
small wading birds will benefit from changing con-
ditions. Resident species and those that breed in 
this wetland network will also be more negatively 
impacted than those using this area for wintering 
or stopover (Ramírez et al. 2018).

Seagrass meadows
Considering the rapid loss of seagrass habitat 
in the Mediterranean Basin and its capacity to 
capture carbon, preventing seagrass degradation 
by developing blue carbon projects is a major 
opportunity for financing seagrass protection. 
The avoided degradation of Posidonia oceanica, 
for instance, could provide an extra source of CO2 
capture of 4 tons per hectare per year (Sifleet et  
al. 2011). More importantly, avoiding their destruc-
tion would also prevent the washing away of carbon 
stored in the sediments under the seagrass beds 
and thus avoid the release of more than 500 tons 
of CO2 per hectare, stored over millennia (Chefaoui 
et al. 2018).Temperate seagrass ecosystems as 
the thermal regime of the Mediterranean Sea, are 
sensitive to ocean warming and will exceed the 
upper thermal limit of the endemic P. oceanica in 
some areas (Marba and Duarte 2010; Jordà et al. 
2012).

Using Cymodocea nodosa as a model species, 
Ontoria et al. (2019) assessed the joint effects of 
warming (at 20°C, 30°C and 35°C) with two poten-
tial outcomes of eutrophication. They found that 
in addition to the possibility of the persistence of 
C. nodosa being directly jeopardized by temper-
ature increase, the joint effects of warming and 
eutrophication may further curtail its survival (see 
projected impacts on seagrasses in Section 4.1.2.1, 
whereas the drivers “Eutrophication” and “Warm-
ing” are detailed in Sections 2.2.7 and 2.3.2).

Coastal lagoons
Coastal lagoons are sentinel systems that are 
highly vulnerable to potential impacts associated 
with climate change, particularly, as these systems 
have a key role in regulating the fluxes of water, 
nutrients and organisms between land, rivers and 
the ocean (Newton et al. 2018).

The effects of seawater acidification were as-
sessed on a number of biological responses for 
one mussel and two clam species, including 

growth and calcification, at two locations, namely 
a coastal lagoon in southern Portugal and in the 
Northern Adriatic Sea (Range et al. 2014). In this 
study, the CO2 perturbation experiments produce 
contrasting responses depending on the species 
and location. Whereas the effects of acidification 
on growth and calcification in water of the Adriatic 
Sea were significant, in the coastal lagoon, these 
effects were much less evident, probably buffered 
by a high carbonate content in the water (Range et 
al. 2014). The same study reveals major variations 
in macroinvertebrate response to the imposed 
changes (in temperature and pH, respectively), 
underpinning the need for species-specific and lo-
cation-specific adaptation measures. A reflection 
on threats to integrated management of the Thau 
coastal lagoon (France) due to climate change and 
the multi-scalar water scarcity adaptation strategy 
underlines that although water uses are currently 
secured thanks to the regional transfer of water, 
they are not coherent with local water manage-
ment and create new vulnerabilities in the context 
of climate change (La Jeunesse et al. 2016). Cli-
mate change scenarios predict intensified terres-
trial storm runoff, providing coastal ecosystems 
with large nutrient pulses and increased turbidity, 
with unknown consequences for the phytoplankton 
community. In the same lagoon (Thau), a 12-day 
mesocosm experiment shows that pulsed ter-
restrial runoff can cause rapid, low quality (high 
carbon: nutrient) diatom blooms (Deininger et 
al. 2016). However, bloom duration may be short 
and reduced in magnitude by fish. Thus, climate 
change may shift shallow coastal ecosystems  
towards famine or feast dynamics.

Covering most of the bottom of the Mar Menor  
lagoon (southeastern Spain), Caulerpa prolifera has 
probably increased the resistance of the lagoon to 
eutrophication processes through the high uptake 
of nutrients from the water column and their re-
tention in the sediments, avoiding high phytoplank-
ton densities (Lloret et al. 2008). Nevertheless, if 
climate change predictions prove true, the current 
status of the lagoon is likely to collapse, since 
future environmental conditions could make C. pro-
lifera unable to reach values of net photosynthesis 
greater than zero, and eutrophication processes 
are expected to appear (Lloret et al. 2008).

Deltas
A comprehensive overview of the status and 
sustainability of the Ebro, Rhône, and Po Deltas 
and Venice Lagoon has been published by Day 
et al. (2019), showing that all of these systems 
have been strongly modified by human activities. 
However, each system has a unique combination of 
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impacts that informs management and restoration 
approaches (see the interaction among drivers in 
Section 2.6).

As an example, the Ebro Delta is a diverse area 
in terms of wetland habitat types and has high 
ecological (e.g., it is the second most important 
"Special Protection Area" for birds in Spain) and 
economic value (e.g., third largest producer of rice 
in Europe) (Fatorić and Chelleri 2012). In the last 
150 years, the Ebro delta has been largely trans-
formed into rice fields, which now cover 70% of 
the total area (Cardoch et al. 2002) and have both 
direct and indirect effects on the ecology of the 
area, such as salt infiltration in ground water. The 
main impact is the destruction of natural habitats, 
but even the remaining deltaic ecosystems have 
been affected by rice production, through altera-
tion of the natural hydrological cycle as a result of 
freshwater inputs during the rice growing season 
(April to September). In addition, large amounts 
of nutrients and pesticides are delivered for the 
fertilization and care of the rice paddies (Forès 
1992). The planned construction of 49 new reser-
voirs mainly for irrigation purposes and withdrawal 
of water upstream from the delta are forecasted 
to have drastic ecological consequences such as 
reductions in sediment and freshwater inputs into 
the delta and detrimental side effects on deltaic 
ecosystems fauna and flora (Prat and Ibáñez 
1995). Overall, because of its morphology, relative 
sea-level rise will become the most important cli-
mate-induced potential hazard for the Ebro delta 
(Sánchez-Arcilla et al. 2008).

Sea level rise may severely threaten many key 
coastal ecosystems such as the Nile delta and 
may cause the loss of important habitats such as 
the loggerhead (Caretta caretta) nesting beaches 
(UNEP/MAP-RAC/SPA 2009). Projection of aver-
aged sea-level rise trends by El Sayed Frihy et al. 
(2010) indicates that the coastal plain of the Nile 
Delta and Alexandria is vulnerable to accelerated 
sea-level rise but not at the same level due to wide 
variability of the land topography, which includes 
low-lying areas, high-elevated coastal ridges and 
sand dunes, accretionary beaches, and artificially 
protective structures. Similarly, based on Earth 
System model simulations, the sea-level variation 
along the Egyptian coasts is significantly affected 
by other factors such as sea-level variation West of 
the Gibraltar Strait, steric sea level, and sea-sur-
face temperature (Shaltout et al. 2015).

Coastal aquifers
Several recent studies have considered the possible 
impacts of climate change and seawater level rise 
on seawater intrusion in coastal aquifers (Sefelnasr 
and Sherif 2014). All have revealed the severity of 
the problem and the significance of the landward 
movement of the dispersion zone under seawater 
level rise. Most of the studies did not consider 
the possible effects of seawater rise on the inland 
movement of the shoreline and the associated 
changes in the boundary conditions at the seaside 
and the domain geometry. Such effects become 
more evident in flat, lowland, coastal alluvial plains 
where large areas might be submerged with sea-
water under a relatively small increase in seawater 
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Figure 4.9 | Nile Delta, Egypt, A) Submerged land in the coastal zone under 0.5 m seawater rise. (B) Submerged land 
in the coastal zone under 1.0 m sea-level rise (Sefelnasr and Sherif 2014). Red line indicates the border of the basin.
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level. None of the studies combined the effect of 
increased groundwater pumping, due to the possi-
ble decline in precipitation and shortage in surface 
water resources, with the expected landward shift of 
the shoreline. Using a two-dimensional horizontal 
model, the study of Sefelnasr and Sherif (2014) in-
vestigated the possible effects of seawater level rise 
in the Mediterranean Sea on the seawater intrusion 
problem in the Nile Delta Aquifer. They concluded 
that large areas in the coastal zone of the Nile Delta 
will be submerged by seawater, and the coastline 
will shift landward by several kilometers on the 
eastern and western sides of the Delta (Fig. 4.9). By 
using an equivalent porous continuous medium to 
represent a karstic Apulian aquifer (southern Italy), 
an evident piezometric drop was confirmed for the 
past period (until 1999) and a likely similar dramatic 
drop in the future was projected (Romanazzi et al. 
2015). All phenomena considered in this study’s 
models (e.g., sea level and sea salinity) showed 
non-negligible effects on coastal groundwater (Ro-
manazzi et al. 2015).

The effects of salinization on coastal aquifers’ 
biogeochemistry typically include decreased inor-
ganic nitrogen removal (with implications for water 
quality and climate regulation), decreased carbon 
storage (with implications for climate regulation 
and wetland accretion), and increased generation 
of toxic sulfides (with implications for nutrient cy-
cling and the health/functioning of wetland biota) 
(Herbert et al. 2015). In agriculture, studies on the 
salinization effects on soil organisms are scarce, 
but negative effects of saline conditions on sur-
vival and reproduction of soil invertebrate species 
(Owojori et al. 2008, 2014) or on avoidance behavior 
of earthworms (Bencherif et al. 2015) have been 
reported. Deleterious effects of soil salinization on 
diverse life stages of agriculture plants have also 
been described (Wichern et al. 2006), including de-
creased and/or delayed germination and/or effects 
on seedling physiognomic state, deficient growth, 
as well as a decrease in photosynthetic pigments, 
and global biomass (Parihar et al. 2015). However, 
some littoral and terrestrial amphipod species can 
survive salinity levels of up to 900 mOsm external 
concentration (Morritt 1988), as along with other 
spiders mentioned earlier (Pereira et al. 2019).

4.2.2.3 Vulnerabilities

Coastal urbanization

The Mediterranean bioregion is currently suffering 
severe disturbance due to intensive urbanization 

and climate change effects (Adloff et al. 2015)34. 
The situation is expected to worsen as land avail-
ability decreases (due to the global warming and 
infrastructure impairment), while demographic 
growth and migration flows are likely to pursue 
(Burak and Margat 2016) (read more on land and 
sea use changes in Section 2.4, water management 
and infrastructure in Box 3.1.1, and the vulnerabil-
ity of coastal energy systems to climate extremes 
in Section 3.3.2.3). In the future, hydroclimatic 
hazards, probably more frequent and intense, 
will have adverse impacts on ecological balances 
and human health and well-being, particularly in 
coastal Mediterranean cities where almost one-
third of the population lives (Hallegatte et al. 2009; 
Magnan et al. 2009; Adloff et al. 2015; Im et al. 
2018). However, Mediterranean coastal cities seem 
to lack a long-term vision (i.e., establishing smart 
cities, green cities, etc.) for planning future urban 
development and valuable policies and social- 
economic resources for establishing participative 
governance (Mazurek 2018) (Section 5.1.3.1).

Social-economic contexts and urban growth rates, 
trends and phases are quite variable from North 
to East and South and even across each country 
(Im et al. 2018). While the size of these urban set-
tlements varies from North to South, most have a 
historic urban center developed around a harbor 
near the sea, which makes the different biological 
species living in or near these areas highly vulner-
able not only to human stressors, but also to global 
phenomena like climate change (Chapter 2).

The survey of juvenile fish populations across 
various infrastructures and natural sites along 
a 100 km shoreline of the French Mediterranean 
coast demonstrated that anthropogenic structures 
can play an important role as potential juvenile 
fish habitats, particularly in harbors where highly 
variable densities were found, with densities on 
ripraps or jetties that were equivalent to those of 
natural sites (Mercader et al. 2018). This is the 
case of the herbivorous fish Siganus rivulatus in 
Lebanon-Eastern Mediterranean where it settled 
in protected shallow areas offering hard substrates 
and algal communities such as muddy harbors 
(Bariche et al. 2004).

One of the most frequently documented negative 
impacts of the high density of harbors and boats, 
are the collisions and disturbance of large mam-
mals (dolphins, whales, sea turtles). In particular, 
the destructive impact of fishing practices on dol-
phin populations has reached international news 

34 http://www.medqsr.org/
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headlines (see Section 4.1.2.2 for more information 
about ship collision effects on cetaceans). Another 
threat for marine mammals in harbor areas is ma-
rine dredging with high concern and impact on the 
marine life of cetaceans, pinnipeds, and sirenians 
with effects largely unknown (Todd et al. 2015). The 
leisure activities, habitat degradation, noise, con-
taminant remobilization, suspended sediments, 
and sedimentation may impact marine mammals 
indirectly through changes to prey. Dredging has 
the potential to impact marine mammals with 
specific species and location effects, depending on 
the type of dredging equipment. In harbor areas, 
marine mammals continue to be impacted by many 
anthropogenic activities and almost all marine 
mammal species have been reported to face at 
least one threat in the Mediterranean (Laran et al. 
2017; Avila et al. 2018).

Reduced primary production (Section 4.1.2.2) and 
the possible increase of local blooms of toxic algae 
in some urbanized coastal areas could have many 
repercussions on marine ecosystem services such 
as tourism and fisheries, and ultimately on human 
health (read how the effects of climate change on 
coastal ecosystems could affect livelihood, culture 
and human rights in Chapter 5.3). The impact of 
eutrophication is largely observed in many Mediter-
ranean systems, namely in harbors. For example, 
in Punic harbors of Carthage, the oldest and most 
well-preserved in the Mediterranean Basin (Gulf 
of Tunis, South Mediterranean Sea), the harmful 
blooms of Dinophysis sacculus, D. acuminata, Alex-
andrium spp., Gymnodinium aureolum, Gymnodinium 
impudicum, Akashiwo sanguinea, Scrippsiella spp. 
and Prorocentrum gracile were identified in corre-
lation with water temperature and orthophosphate 
concentrations (Aissaoui et al. 2014) (Section 2.3.3).

The Mediterranean Basin is particularly exposed 
to biological invasions through shipping from 
maritime traffic and the high number of harbors 
constitute large areas for the extension of several 
non-indigenous species (Izquierdo-Muñoz et al. 
2009). The species Pseudonereis anomala (Gravier 
1900) (Polychaeta, Nereididae) first recorded in 
Alexandria (Egypt) by (Fauvel 1937), was recorded 
in several harbor areas in the Mediterranean 
within the period (2003 and 2005) (Kambouroglou 
and Nicolaidou 2006), indicating shipping transfer 
of benthic species (read more on biological pollut-
ants in Section 2.3.4, on non-indigenous species 
in Section 2.5, and on future risks associated with 
non-indigenous species in Section 6.12).

In harbor systems, where macrofauna is scarce 
and difficult to sample, the study of meiofaunal 

assemblages is proposed as the most suitable 
instrument for monitoring purposes since, ports, 
ranging from large commercial harbors to small 
tourist marinas, are the main link between an-
thropized and natural coastal ecosystems, and 
should be taken as primary sources of coastal 
disturbances (Sedano Vera et al. 2014). Other 
Mediterranean species associated with marine 
fouling harbors have been described by Khedhri et 
al. (2016). The brachyuran decapod is associated 
with marine fouling in Egyptian Mediterranean 
harbors and nine species of 9 genera affiliated with 
5 families have been recorded so far.

The spatial and temporal changes in climate 
attractiveness in the Mediterranean could have 
major impacts on the sustainability of tourism 
development as suggested by Amelung and Viner 
(2006), who used a Tourism Climate Index based 
on future climate change scenarios for the Med-
iterranean region. This intense tourism activity is 
harming the Mediterranean shores. Based on the 
type of garbage on 13 Mediterranean beaches, 
there are indications that most Mediterranean 
coastal litter is land-based (Gabrielides et al. 
1991). In fact, based on beach cleanups organized 
over the summers of 2016 and 2017 in Cyprus, 
Loizidou et al. (2018) suggest that although these 
initiatives are quite successful at collecting large 
pieces of marine litter, small pieces of litter (such 
as cigarette butts and small pieces of plastic 
items related to recreational activities) remain, 
accumulating or buried over time, with some items 
becoming a nuisance to beach goers and a poten-
tial source of marine litter. This issue is already 
influencing coastal organisms such as loggerhead 
sea turtles (Caretta caretta) where, according to a 
survey by Tomas et al. (2002), the most frequent 
type of debris in their gastrointestinal tract is 
plastics (75.9%). Furthermore, the environmental 
impacts of sunscreen chemicals are likely to be 
exacerbated in the Mediterranean waters due 
to the massive influx of tourists and its densely 
populated coasts, the basin’s limited exchanges 
with the ocean, the high residence time of surface 
waters, and its oligotrophic waters, which raises 
significant concerns about its toxicity on marine 
biota and its bioaccumulation in the marine trophic 
chain (Tovar-Sánchez et al. 2019) (Section 2.3).

Coastal cities with a sandy ground are often ex-
posed to massive sand extraction. An investigation 
on the short-term effects of sand extraction on 
macrozoobenthic communities before and after 
beach dredging along the Emilia-Romagna coast 
(northern Adriatic Sea) showed no significant set-
tlement of opportunistic species (Simonini et al. 
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2005). The same study suggested that the limited 
impact of sand extraction operations on the physical 
characteristics of sediment and hydrological-sed-
imentary characteristics in the relict sand area 
should aid its rapid recovery and the restoration of 
the original community in a short period of time 
(2–4 years after dredging). The same pattern was 
documented in the coastal ecosystems of the Bay 
of Blanes on the Catalan coast (Sardá et al. 2000) 
where recolonization in these dredged habitats 
was fast, and no changes in seasonal trends were 
detected after dredging. However, this latter study 
documented that the filter-feeder Callista chione 
and the carnivorous polychaetes Protodorvillea 
kefersteini and Glycera spp., were still significantly 
reduced after two years, suggesting that a longer 
period is needed to restructure dredged bottoms 
to their initial situation (Sardá et al. 2000).

Sea level rise

Similar to the impacts of sea level rise elsewhere 
(Bernstein et al. 2019; Mullin et al. 2019; Murfin 
and Spiegel 2020), many Mediterranean regions 
will be increasingly exposed to a major risk of 
submersion and erosion, affecting several parts 
of the coast (with extreme cases being Venice, 
Kerkennah archipelago in Tunisia, Alexandria and 
the Nile delta) (UNEP/MAP/PAP 2015; UNEP/MAP 
2016). Future risks associated with sea level rise 
are detailed in Section 6.9. The main consequenc-
es on coastal ecosystems include more frequent 
and/or intensive flooding along low-lying coasts, 
particularly in delta areas, lagoon coasts, tideland 
and some islands (Sections 2.2.8.1 and 6.9.1). Slight 
increases in mean sea level will lead to relatively 
quick inundation, deterioration and displacement 
of significant areas of wetland vegetation. Severe 
losses of coastal wetlands are expected in the 
Mediterranean (McFadden et al. 2007). Apart from 
the actual loss of land area, these wetlands sup-
port rare and localized habitats containing highly 
specialized organisms, the degradation or loss of 
which will in turn impact migratory bird popula-
tions, particularly along main migratory routes 
(Cyprus, Malta, Palm Islands Nature Reserve in 
Lebanon). Mediterranean waterbird communities 
already show changes in community composition 
based on the recent changes in temperature and 
whether or not they have a strict protection status, 
greatly improves the adaptability of species and 
communities (Gaget et al. 2018). Future breeding 
suitability maps indicate that the little tern (Sternu-
la albifrons) and the common tern (Sterna hirundo) 
could potentially face a drastic decrease in suitable 
breeding grounds even in protected areas (Ivajnšič 
et al. 2017).

A modelling study from the island of Zakyn-
thos-Greece for the loggerhead sea turtle (Caret-
ta caretta) suggests that even under the most 
conservative 0.2 m sea-level rise scenario, about 
38% (range: 31 to 48%) of total nesting beach area 
would be lost, while an average of 13% (range: 7 to 
17%) of current nesting beach area would be lost 
(Katselidis et al. 2014). For a sea-level rise of 1.2 m, 
they estimated a loss of 67.3% for loggerhead tur-
tle nests and 59.1% for green turtle nests although 
suitability of nesting sites for future migration will 
also be dependent on existing natural and artificial 
barriers (Varela et al. 2019).

Accelerated cliff and beach erosion will result in 
habitat and species loss. For example many cliffs 
host chasmophytic endemics while many coastal 
habitats of priority importance at the European/
global level (i.e., coastal Junipers, Posidonia mead-
ows) (Gubbay et al. 2016; Janssen et al. 2016). In 
the western Mediterranean, seagrass could reach 
functional extinction under warming scenarios 
(Jordà et al. 2012; Telesca et al. 2015). The effects of 
sea-level rise on competition and the subsequent 
plant diversity decrease in Mediterranean-cli-
mate marshes (Noto and Shurin 2017). Increased 
salinization in the estuaries will result in species 
changes/structure, function, and occurrence of 
eutrophication (EEA 2004; Bernes 2005; Robinson 
et al. 2005; Smayda 2006).

4.2.3 Adaptation

4.2.3.1  Adaptation of different 
coastal systems

When it comes to adaptation strategies for coastal 
systems to environmental changes, different zones 
require specific actions. For example, shorelines 
are mainly affected by deterioration of engineering 
species such as corals, and vermetids forming 
reefs that protect coasts from erosion, regulate 
sediment transport and accumulation and provide 
habitat for other species. Estuaries are particular-
ly vulnerable to pollution, including plastic from 
nearby human settlements and require different 
adaptation strategies. Thus, suitable adaptation 
policies include (i) reducing pollution runoff, both 
from agriculture and industry and waste manage-
ment, (ii) policies to limit or prevent acidification 
and (iii) moving aquaculture operations to areas 
protected from critical acidification levels (Sections 
3.1.5 and 6.11).

Keystone Mediterranean benthic species are vul-
nerable to ocean acidification and warming (Rodol-
fo-Metalpa et al. 2011, 2014; Milazzo et al. 2014; 
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Zunino et al. 2017; Verdura et al. 2019). Therefore, 
spatial planning for these areas should include 
plans for coastal protection and different urban-
ization schemes (infrastructure sector), plans to 
enhance the attractiveness of these zones for 
tourists, and different regulations for recreation-
al boats. The most likely mechanisms by which 
ocean acidification refugia (OAR) can mitigate 
ocean acidification impacts are reducing expo-
sure to harmful conditions or enhancing adaptive 
capacity (Kapsenberg and Cyronak 2019). While 
local management options, such as creating 
OAR, can help coastal ecosystems to adapt, they 
present unique challenges, and reducing global 
anthropogenic CO2 emissions remains a priority. 
Given the scale of ocean acidification impacts 
on human health and well-being, recognizing 
and researching these complexities may allow 
the adaptation of management such that both 
the harms to human health are reduced and the 
benefits enhanced (Falkenberg et al. 2020).

Deep waters are mainly impacted by changes 
in wild harvests so adaptation measures should 
focus on fisheries indirectly impacted by chang-
es in phytoplankton production at the surface as 
well as ocean warming. Shallow coastal zones 
are exposed to changes in availability of fish 
and shellfish. Hence, here the most effective 
adaptive measures involve the management of 
both fisheries and aquaculture, and the wise 
use of coastal habitats. The resilience of so-
cio-ecological systems to sea level rise, storms 
and flooding can be enhanced when coastal 
habitats are used as natural infrastructure 
since they provide similar services and added 
benefits that support short- and long-term 
biological, cultural, social, and economic goals 
(Powell et al. 2019). Better integration across 
policy and planning instruments is needed 
to enhance adaptive capacity at the interface 
of climate change adaptation, marine and 
aquaculture planning and management. This 
requires holistic and cooperative management 
tools, such as aquaculture management areas, 
that could support adaptation across wider 
spatial scales (Greenhill et al. 2020). This 
could be enabled by establishing links between 
existing and proposed collaborative groups to 
enhance development of adaptation responses 
and through co-ordination of monitoring and 
review processes to promote learning across 
scales (Kapsenberg and Cyronak 2019; Powell 
et al. 2019; Greenhill et al. 2020). Economic and 

financial tools to promote environmental man-
agement are detailed in Section 5.1.3.2.

4.2.3.2  Harmful algal bloom 
monitoring

In the last two decades, Harmful Algal Bloom 
(HAB) events have increased, with many spe-
cies suddenly emerging in regions previously 
free from such toxic or potentially harmful 
algae. Along the Mediterranean coastline, 
several phytoplankton toxic networks have 
been established such as the French REPHY 
network35. The recent observations are quite 
atypical for phytoplankton blooms, and may be 
partially explained by exceptionally favorable 
new environmental conditions related to cli-
mate change (Draredja et al. 2019; Jenhani et 
al. 2019; Ninčević Gladan et al. 2020). Coastal 
HABs appear to have increased on a global 
scale and several reasons have been suggest-
ed: better knowledge of toxic species, better 
monitoring and alerting systems, the transport 
of algal cysts in ballast waters, the development 
of aquaculture, the stimulating effect of urban 
and industrial activities and/or atypical climate 
conditions (Glibert et al. 2005). The same trend 
has been observed in the Mediterranean (see 
Sections 2.3.4 and 4.2.1.1). Thus, national and 
regional water quality assessment efforts and 
routine coastal monitoring programs intended 
to detect species, and the study their toxicities 
have increased worldwide and in the Mediterra-
nean area as well (Nastasi 2010).

Similar to programs elsewhere around the Med-
iterranean, the Tunisian national monitoring net-
work of phytoplankton and phycotoxins, has been 
implemented since 1995 to ensure public safety 
by establishing tools for early warning of bloom 
events. Also, a regional project “Risk-Monitoring, 
Modelling and Mitigation (M3-HABs) of benthic 
microalgal blooms across the Mediterranean 
regions” found that better awareness of the risks 
associated with the Ostreopsis blooms could 
be achieved, including appropriate diffusion of 
cautionary measures, the production of common 
monitoring protocols, the development of new 
technologies for species-specific identification, 
species counting, and the build-up of prediction 
models in order to prevent and reduce risk factors 
for the environment, human health and economic 
activities. Despite the efforts in management and 
monitoring work, predicting the impact of climate 

35 http://www.ifremer.fr/envlit/surveillance/phytoplancton_phycotoxines
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change on HABs in the Mediterranean is very 
challenging as it involves many combining factors. 
Thus, the calls for increased awareness in both 
HAB and seafood monitoring programs remain a 
high priority in the Mediterranean region (Turki et 
al. 2014; Visciano et al. 2016; Estevez et al. 2019; 
Ordoñez et al. 2019).

4.2.3.3  Early detection of potentially 
dangerous species

An updated list of introduced alien species in the 
Mediterranean (November 2018) shows that the 
non-indigenous species (NIS) number is close 
to 1,000 species (Section 2.5.1.1). Adaptation to 
NIS requires protecting the coastal population 
against the possible risks associated with the 
establishment of NIS (Section 2.5). In fact, in the 
past two decades research interest in NIS has 
increased, mostly stimulated by evidence about 
their ecological and socio-economic impacts in 
the Mediterranean region. This has also raised the 
urgency of innovative approaches to forecast, track 
and manage these species (Corrales et al. 2018) 
(Section 6.12). For example, the Early Detection 
and Rapid Response (EDRR) has been recognized 
as a key aspect for NIS management and acknowl-
edged by the European Commission, and has been 
included in the new European regulation (EU) No 
1143/2014 on the prevention and management of 
the introduction and spread of NIS. Efficient public 
awareness campaigns disseminating informa-
tion to local communities, also through “specific 
alerts”, was adopted as the key driver to quickly 
detect unwanted NIS and are still used in the last 
few years with several theoretical frameworks de-
veloped through formalized early warning systems 
(Azzurro et al. 2014). 

The silver-cheeked toadfish Lagocephalus scelera-
tus (Gmelin, 1789) (Tetraodontidae) has expanded 
rapidly through the Western Mediterranean (Stref-
taris and Zenetos 2006; Jribi and Bradai 2012; Kara 
et al. 2015). Due to its toxicity, many Mediterranean 
countries have quickly responded by informing the 
general public about the risks associated to the 
consumption of this species. These awareness 
initiatives, necessary to limit the impacts of this in-
vasion (Nader et al. 2012), have been carried out in 
countries such as Egypt, Turkey, Lebanon, Cyprus, 
Greece and Tunisia (Ben Souissi et al. 2014). The 
same strategy is being adopted for the common 
lionfish Pterois miles (Section 2.5.1.3). Hence, early 
detection and continuous monitoring of these spe-
cies is a successful example of positive interaction 
between citizens, researchers, and policymakers 
(Azzurro et al. 2016).

The current list of NIS provides a reliable updated 
database and basis to continue monitoring the 
arrival and spread of NIS in the Mediterranean, 
as well as to provide counsel to governmental 
agencies with respect to management and control. 
The current geographical, taxonomical and impact 
data gaps can be reduced only by instituting har-
monized standards and methodologies for moni-
toring alien populations in all countries bordering 
the Mediterranean Sea.

4.2.3.4  Adaptation management 
strategies for the jellyfish 
Pelagia noctiluca

Long-term climate fluctuations have been corre-
lated with jellyfish abundance in Mediterranean 
waters as revealed by (Molinero et al. 2005, 
2008). The Pelagia noctiluca represents the most 
important jellyfish species in the Mediterranean 
Sea (an oceanic scyphozoan that has become 
very abundant along the coasts) with negative 
interaction and toxicity (Condon et al. 2013). In 
order to better monitor and track the dispersion 
of jellyfish in the Mediterranean and raise aware-
ness about these species, many networks have 
been established. The CIESM JellyWatch Program 
was set up in 2009 to gather baseline data on the 
frequency and extent of jellyfish outbreaks across 
the Mediterranean Sea (CIESM 2009b, 2009a). 
The Medusa Project set up in Catalonia set out 
to understand the spatio-temporal dynamics of 
the jellyfish populations in the NW Mediterranean 
Sea by carrying out daily sampling during summer 
(May to September) of 243 beaches, covering more 
than 500 points. The recommendations of Medusa 
were to enhance similar sampling programs for all 
Mediterranean coasts to better understand chang-
es in the distribution, abundance, and blooming 
patterns of dangerous jellyfish species (Canepa et 
al. 2014). The MED-JELLYRISK project “towards an 
early warning system to detect jellyfish swarms”, 
started with a campaign to better understand the 
movement of jellyfish blooms. Three sea drifters 
were deployed off the coast of Mellieha Bay. Based 
on satellite tracking, the information gathered by 
the sea drifters - including sea surface currents 
(direction and strength) and temperature allowed 
scientists to validate numerical models that can 
simulate the dispersion of jellyfish blooms and 
predict their incidence on coastal areas. These 
jellyfish dispersion models constituted the basic 
element of a prototype system intended to act as 
an early warning of jellyfish swarms impacting 
Mediterranean beaches. The mission of the Italian, 
Maltese, Spanish and Tunisian scientists behind 
the MED-JELLYRISK project (2014-2015) was 
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making public authorities, local businesses and 
beachgoers ready to live together with jellyfish and 
adapting solutions to address the growth of such 
fascinating creatures (Lucas et al. 2014). The pos-
sible relationships between climate change and 
blooms of P. noctiluca have been studied and it has 
been proposed that P. noctiluca may be an indica-
tor of climate variability in the Mediterranean Sea 
(Daly Yahia et al. 2010; Condon et al. 2013; Rosa et 
al. 2013).

Despite these studies and monitoring surveys, ad-
ditional studies and long-term surveys are needed 
to improve knowledge of the eco-physiology of the 
marine species, which will help to better man-
age and maybe take advantage of NIS, harmful 
microalgal and jellyfish biomasses and/or their 
bioactive molecules as a resource for biotechno-
logical applications, from biofuels to pharmacol-
ogy, cosmetics, health products, food for humans 
and feed for livestock or aquaculture farms (de 
Domenico et al. 2019).

4.2.3.5  Ecosystem-based adaptation 
management

Given the already poor conditions of exploited re-
sources, there is a need for fisheries management 
to adapt to future changes and to incorporate 
climate change impacts into future management 
strategy assessment (Moullec et al. 2019) (Section 
3.2). Ecosystem-based adaptation is gaining at-
tention as a cost-effective method for protecting 
human and ecological communities against the 
impacts of climate change. This approach has 
been supported by many studies for various Med-
iterranean habitats to improve their resilience 
against the consequences of various drivers. For 
example, an initial assessment of vulnerability  
to sea-level rise to help decision makers, and  
other relevant stakeholders, to develop appropriate 
public policies and land-use planning measures 
has been provided (Demirkesen et al. 2008). Also, 
potential strategies to ameliorate the impact of 
seawater inundation have been proposed, such as: 
wetland preservation, beach nourishment at tour-
ist resorts and the afforestation of dunes (Snoussi 
et al. 2008). Protected areas can play an important 
role in safeguarding coastal dune plant communi-
ties against land-use transformations (Prisco et 
al. 2016). In this context, functional traits can guide 
conservation planning, helping to identify groups 
of species most at risk of population declines. Fu-
ture conservation interventions need to be mindful 
to ensure that the natural disturbance regime of 
dune ecosystems is not disrupted. At the water 
body management level, scientific cooperation is 

necessary to deal with the conceptual and ecolog-
ical difficulties derived from inter and intra-lagoon 
variability in hydrology and biological assemblag-
es, which are inherent factors in the functioning 
of these complex ecosystems (Pérez-Ruzafa et al. 
2011).

The multiple levels of land-sea interactions (Fang 
et al. 2018) require a new approach to Integrated 
Coastal Zone Management (ICZM) and marine spa-
tial planning. The Mediterranean includes hotspots 
of global priority for land-sea integration (Halpern 
et al. 2009) and there are emerging Mediterranean 
case studies which embrace such an approach 
(Ramieri et al. 2019). Conservation planning and 
management should focus on cross-realm pro-
cesses and building resilience between realms. In 
this respect, connectivity between processes and 
structural elements is of the utmost importance. 
Single realm connectivity is inadequate (Fang et 
al. 2018) since it cannot account for cross-system 
threats (Beger et al. 2010) and multi-realm spe-
cies (Giakoumi et al. 2019). Interaction between 
realms should be translated into structural con-
nectivity (see for example the framework proposed 
by (Beger et al. 2010) or functional connectivity 
(Magris et al. 2018) where multi-realm species are 
taken into consideration. In addition, integrating 
connectivity and climate change (Magris et al. 
2014; Keeley et al. 2018) can be used in various 
spatio-temporal scales and could be fully applied 
to maintain and restore land–sea processes. Case 
studies and innovative approaches are highlighted 
in Sections 6.9.3 and 6.9.4.

4.2.3.6  The role of institutions/
actors and local communities: 
recommendations

Adaptation efforts often focus on one species, or 
species group (e.g., jellyfish, algae) or on a spe-
cific land-sea ecosystem (e.g., sandy beaches). A 
more holistic approach is required when trying to 
establish adaptation methods for the entire Medi-
terranean, which could include:

•  Ecosystem Based Management (EBM) of coastal 
areas: ecosystem-based approaches (the inte-
grated management of land, water and living 
resources) to climate change adaptation and 
mitigation.

•  Identify adaptation and mitigation interactions 
(synergies and conflicts) and assumptions relat-
ed to adaptation/mitigation.

•  Building institutional capacity (governance - adap-
tive management/monitoring) to improve govern-
ance over land/sea natural resources and climate 
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change adaptation. A Nexus approach has been 
proposed by the IUCN Commission on Ecosystem 
Management - coastal ecosystem group (CEM/
CEG) based on three complementary approach-
es: (i) sectoral adaptation, (ii) cross-sectoral 
governance and (iii) territorial strategic planning 
(Krchnak et al. 2011; Ozment et al. 2015).

•  Adaptation and coastal community resilience: 
Impacts will directly affect coastal communities. 
A participatory research approach may assist 
in assessing vulnerability of socio-economic 
groups, their current adaptation strategies and 
their adaptive capacity to cope with the impacts 
of climate variability and extremes and sea-level 
rise. Such an approach may identify barriers and 
opportunities for community response to climate 
change and place emphasis on any existing 
knowledge/practices promoting adaptation.

•  Integrating local knowledge and institutions with 

respect to risk management and adaptation is 
part of an ecosystem-based approach (Colls et 
al. 2009).

•  At a practical/management level, adaptation to 
coastal risks can be achieved via hard structures 
but also soft protection including beach nour-
ishments and dune rehabilitation, in addition 
to improved spatial planning regulations, and 
anticipatory and reactive adaptation.

Overall, information, data, adaptation techniques and 
networks do exist, but collaboration can be enhanced. 
Also, public involvement in the development and 
implementation of adaptation strategies for these 
ecosystems can be improved. Awareness campaigns 
on the importance of adaptation measures for these 
ecosystems may help policymakers to make the 
necessary steps to ensure their protection and con-
servation against potential climate change impacts.

4.3.1  Current conditions and past trends

The Mediterranean region is recognized as a glob-
al biodiversity hotspot (Myers et al. 2000; Mitter-
meier et al. 2005), representing one of the Earth’s 
most geologically, biologically, and culturally rich 
and complex regions (Blondel and Aronson 1999; 
Blondel et al. 2010; Visconti et al. 2018). More than 
50 plant refuges during recent ice ages (Médail 
and Diadema 2009) have allowed plant diversity 
to be exceptionally high (Mittermeier et al. 2005), 
with about 25,000 plant species today (Myers et 
al. 2000) and 60% endemism (Thompson 2005). 
There are 290 tree species (Noce et al. 2016), of 
which 200 are endemic (Quézel and Médail 2003; 
Gauquelin et al. 2018). Two thirds of Mediterrane-
an amphibian species, 48% of reptiles, a quarter 
of mammals, 14% of dragonflies, and 3% of birds 
are endemic (Mittermeier et al. 2005; Lefèvre and 
Fady 2016; Paine and Lieutier 2016). However, the 
diversity of several taxa has not been analyzed in 
detail under the taxonomic and ecological angles 
(Azam et al. 2016).

4.3.1.1  Past climate variability and 
its impact on terrestrial 
ecosystems

Regional temperatures in the Mediterranean Basin 
are now ~1.4°C higher than during the 1880-1920 
period, higher than the increase in global temper-

ature of 0.85°C (Chapter 2). During the Holocene 
(especially in the second half of this period), periods 
of precipitation deficits have occurred, but in con-
trast to the 21st-century situation, temperatures did 
not rise above the present average. These periods 
of precipitation deficits (~6 to ~5.2, ~4.2 to ~4, and 
~3.1 to ~2.9 thousand yr BP) have been identified as 
possible causes of declines or collapses in civiliza-
tion in the eastern Mediterranean region (Guiot and 
Kaniewski 2015).

Information from tree rings from different tree 
species growing at high elevation can provide 
annually-resolved, absolutely dated climate infor-
mation across the Mediterranean covering the past 
centuries. Reconstructions from locations across 
the Mediterranean reflect different climate con-
ditions during different times of the year. Recent 
tree ring-based climate reconstructions reflect not 
only seasonal temperatures but also parts of the 
hydrological cycle including drought stress. Only few 
tree-ring based climate reconstructions go beyond 
the past 600 years and this limits our understanding 
of drought variability, the magnitude and timing of 
long-term trends and centennial-scale variability 
across the Mediterranean back to medieval times.

The most detailed depiction of Mediterranean drought 
variability over the last 900 years is presented in the 
Old World Drought Atlas (OWDA), a tree-ring-based 
field reconstruction of warm-season drought severity 

4.3 Terrestrial and freshwater ecosystems
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(Cook et al. 2015). Summer drought reconstructions 
from high-elevation sites from Mount Smolikas in 
the Pindus Mountains (Northern Greece) go back 
to AD 730 (Konter et al. 2017; Klippel et al. 2018). 
Drought variability displays significant East-West 
coherence between the western (Spain, Morocco, 
Algeria, and Tunisia) and eastern (Balkans, Greece, 
and Turkey) Mediterranean Basin on multi-decadal 
to centennial timescales (Cook et al. 2016). There 
appears to be a north-south contrast in the eastern 
Mediterranean, with a tendency for wet anomalies 
in Greece, Anatolia, and the Balkans while Libya, 
the southern Levant, and the Middle East are dry 
and vice versa associated with North Atlantic Os-
cillation (NAO) and other atmospheric circulation 
dynamics (Cook et al. 2016). The recent droughts in 
north-western Africa (Morocco) and the Levant are 
unusual in the context of the past 900 years (Esper 
et al. 2007; Cook et al. 2016). In the Pyrenees, the 
Alps, the northern Apennines, the Balkans, the 
north-western and southern Carpathians long tree 
ring width formation are mostly controlled by sum-
mer temperature (Buntgen et al. 2007; Büntgen et 
al. 2009, 2017; Popa and Kern 2009; Panayotov et al. 
2010). Reconstructions from the Iberian Peninsula 
and northern Africa for the past 900 years reflect 
overall warmer conditions around 1200 and 1400, 
and again after around 1850. Cooler conditions are 
reconstructed for the mid 13th century and between 
the 15th and 18th century.

The only winter/spring δ13C from tree ring-derived 
temperature reconstruction from southwestern 
Turkey indicates warmer conditions during the early 
12th century and the late 15th century and lower 
temperatures from the early 16th century to the late 
19th century (Heinrich et al. 2013). Tree ring-based 
climate reconstructions account for a maximum of 
35% explained variance and thus are associated with 
large uncertainties. 

Pollen-based reconstructions for the entire Holocene 
confirm the picture that significant switches be-
tween drier and wetter conditions have occurred 
around the Mediterranean Basin, even if tempera-
tures have never reached current levels. Vegetation 
has switched between major biome categories in up 
to 10% of the land area from one century to another, 
with only slightly higher values during the particular 
shifts identified above (Guiot and Cramer 2016).

4.3.1.2  Direct human impacts on 
ecosystems in the past

The Mediterranean Region is also one of the regions 
with the longest and most intense human occupation 
in the world (Underwood et al. 2009), and its diversity 
is the result of co-evolution between human societies 
and their environment, characterized by constantly 
evolving land use practices over at least the past 300 
generations of human occupation (Blondel 2006). The 
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Figure 4.10 | Mediterranean land systems (Malek et al. 2018).
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presence of many endemic species is closely related 
to extensive use of Mediterranean landscapes, par-
ticularly agro-silvo-pastoral mosaic systems (Médail 
and Quézel 1999) and wetlands (Cuttelod et al. 2009). 
Reconstructing landscapes and ecosystems over the 
course of time remains difficult. Knowledge of the 
human history of the region is therefore still limited. 
Most changes in land cover appear to have been due 
to change in human activities, often inducing diversity 
through changes in different taxonomic groups and 
their interactions (Sirami et al. 2010). Throughout 
the Holocene, Mediterranean ecosystems appear to 
have been rather resilient to perturbations (Blondel 
2006; Underwood et al. 2009). Together with urban-
ization and agriculture intensification (Myers et al. 
2000), land abandonment and the decrease in open 
habitats are key trends in several countries of the 
northwestern part of the Mediterranean Basin (Por-
tugal, Spain, France and Italy) (Mazzoleni et al. 2004). 

Since about 1980, biodiversity changes are faster and 
greater across different Mediterranean taxonomic 
groups and habitats (Blondel et al. 2010; Vogt-Schilb 
et al. 2016; Delpon et al. 2018). Species loss is 
marked by a general trend of homogenization (loss 
of vulnerable and rare species) recorded in several 
taxonomic groups and by a general simplification of 
biotic interactions (loss of specialized relationship) 
(Blondel et al. 2010; Visconti et al. 2018).

The most detailed land use map of the Mediterrane-
an indicates a highly heterogeneous spatial structure 
of land use systems (Fig. 4.10) (Malek and Verburg 

2017; Malek et al. 2018). In a coarser reconstruction 
of land use change during recent decades, cropland 
was found to be the dominant land use (35.2%), 
grassland was the second most common land cover 
(26% of plots), followed by forest (20.7%) and other 
lands (13.4%). Settlement and wetlands accounted 
for the smallest number of plots, with 3.3% and 
1.4% respectively (Martín-Ortega et al. 2018).

During the period 2000-2015, human activities have 
intensified in the Mediterranean region, particularly 
in Spain, France, Turkey and most North African 
countries (Fig. 4.11), where an increase in cropland 
was recorded. An intensification of agricultural activ-
ities in the region is associated with marked transi-
tions from non-irrigated or heterogeneous cropland 
to permanently irrigated cropland (Ruiz-Benito et 
al. 2012), leading to an increased use of freshwater 
resources, with similar projections being made for 
the future (Malek et al. 2018). New areas containing 
settlements occurred concurrently with this regional 
expansion in cropland because of urbanization and 
tourism, indicating an important trend of urbaniza-
tion across the region (Martín-Ortega et al. 2018), 
impacting landscape character, resources use and 
ecosystem services capacity (Martínez-Fernández et 
al. 2009; Ruiz-Benito et al. 2012; Balzan et al. 2018).

Forests

In the Mediterranean region, the term ‘‘forest’’ 
comprises a variety of vegetation types interleaved 
with one another in complex patterns created by 

Other use    Forest
Forest    Other use    

FAO ecological zones within the Mediterranean region   

No change    
Other use    Cropland or settlement

Figure 4.11 | Map of Global Dryland Assessment (GDA) plots showing main changes in land use over the years 
2000 to 2015. Non-forest land uses are shown in green. Land use shifting from forests to other uses is shown in red. 
Changes from other land to cropland and settlements are shown in yellow. Plots that did not change are shown in 
black (Martín-Ortega et al. 2018).
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variations in soil, topography, climate, human use 
and fire history, among other factors. This includes 
dense stands with a closed canopy, as well as 
pre-forest or pre-steppe structures with lower 
tree density and tree height (Gauquelin et al. 2018) 
such as the human-shaped Mediterranean mosaic 
landscapes, including dehesas or montados, and 
multifunctional agro-silvopastoral systems of 
pastures with scattered oaks, typical of the Iberian 
Peninsula. The forests of the Mediterranean Basin 
cover more than 48.2 million ha of which 35 million 
are in southern Europe, 8.8 in the Middle East and 
4.4 in North Africa (Quézel and Médail 2003; Fady 
and Médail 2004). However, based on the FAO defi-
nition of forests (“Land spanning more than 0.5 ha 
with trees higher than 5 m and a canopy cover of 
more than 10%”), there were an estimated 88 mil-
lion ha of forest area in Mediterranean countries in 
2015, representing 2.2% of the world’s total forest 
area (FAO and Plan Bleu 2018).

Despite the small extent of the Mediterranean 
forest area compared to rest of the world, it is a flo-
ristic global hotspot with ca. 25,000 flowering plant 
and fern species (4.5% of the world´s endemics), 
which represent approx. 10% of the world’s flower-
ing plants (Myers et al. 2000). It is also the world’s 
second highest region in terms of in plant ende-
mism, with 50-60% of the plants being found no-
where else, including emblematic species such as 
cork oak (Quercus suber), argan (Argania spinosa), 
cypresses such as Tetraclinis articulata or, Junipe-
rus thurifera, or fir species such as Abies pinsapo, A. 
marocana, A. nebrodensis, many of them endemic 
to the different mountain ranges across the Med-
iterranean (Thompson 2005; Blondel et al. 2010). 
The Mediterranean Basin hosts 290 indigenous 
woody species and subspecies (in comparison to 
135 for non-Mediterranean Europe), 201 of which 
are endemic (Fady-Welterlen 2005). Intra-region 
variability in climate, soil and human factors result 
in a mosaic of forest types (Masiero et al. 2013). 
The relatively harsh climate conditions in arid 
zones prevent the existence of tall forests and lead 
to the formation of maquis and garriga shrublands, 
dominated by evergreen shrubs such as Pistacia 
lentiscus, Quercus coccifera, Q. calliprinos and Cis-
tus sp. The semiarid zones are dominated by Pinus 
halepensis in the western part and Pinus brutia in 
the eastern areas. Sub-humid areas are the typical 
habitat for evergreen oaks such as Quercus ilex or 
Q. suber, but also Pinus pinea and other accom-
panying species such as Arbutus unedo or Erica 
arborea. Deciduous and marcescent oaks appear 
in the sub-humid to humid Mediterranean areas, 
with oak species such as Quercus pubescens, Q. 
cerris, Q. pyrenaica, Q. faginea or Q. macrolepis, 

among others, accompanied by conifers such as 
Cedrus sp. or by Mediterranean firs (Abies pinsapo 
or A. cephalonica). In mountain areas pines be-
come the dominant species including P. nigra and 
P. sylvestris, and it is also possible to find islands 
of oceanic climate with Q. robur, Q. petraea, Fagus 
sylvatica or Abies alba. Along the rivers, forests of 
Fraxinus sp., Populus alba and P. nigra can prosper 
(FAO and Plan Bleu 2013). The wildlife diversity 
associated with this variety of forest environments 
is also high: 786 of 1,601 vertebrate Mediterranean 
species live in forest habitats and 792 of 1,184 
terrestrial insects assessed by the IUCN Red List 
(as in 2018) are recorded as living in forests, 364 
of which are endemic to the Mediterranean region 
(FAO and Plan Bleu 2018).

The human footprint in Mediterranean forests
The current composition, structure, dynamics and 
biological diversity of Mediterranean forests can-
not be understood without considering the long 
history of uses and changes induced by human 
activities, which have contributed to shaping the 
Mediterranean landscapes as we know them today 
(Blondel 2006). Human influence in the Mediter-
ranean dates back several thousand years, to the 
point that some authors argue that a “coevolution” 
has shaped the interactions between these eco-
systems and the human societies that inhabited 
them (Blondel 2006).

Transformation into agricultural fields, over-ex-
ploitation, the prevalence of livestock grazing within 
forests, and the repeated occurrence of natural and 
human-caused fires led to a progressive reduction 
and fragmentation of vegetation cover, and forests 
are mainly confined into the less fertile slopes and 
occupy less than 15% of their potential area (Quézel 
and Médail 2003). In some areas, the loss of forest 
canopy on slopes and their associated understory 
after fire events has led to important soil erosion 
(Cerdà and Mataix-Solera 2009; Shakesby 2011). 
Nevertheless, most soil degradation in forests of 
the Mediterranean Basin is associated with over-
grazing and trampling of the forest understory (Le 
Houérou 1990; FAO 2016; FAO and Plan Bleu 2018).

In many areas, however, the combination of for-
ests, pastures and fields, together with the high 
variability in climate, relief and soil resulted in a 
mosaic-type landscape that greatly contributed 
to maintaining the biological diversity of Mediter-
ranean landscapes. These landscapes are highly 
dependent on human stewardship to maintain their 
resilience to disturbances (e.g., by reducing fire 
risk through browsing the forest understory (Blon-
del 2006). The population increase and industrial 

CHAPTER 4 - ECOSYSTEMS



379CLIMATE AND ENVIRONMENTAL CHANGE IN THE MEDITERRANEAN BASIN  |  MedECC

development from the 18th century onwards led 
to an increase in the pressure on forests for wood 
and charcoal on the northern shore of the Medi-
terranean Basin (Nocentini and Coll 2013). Forests 
were intensively cut and transformed into coppices, 
some species were overexploited, and many forests 
were transformed into uniform, even-aged systems 
managed through clearcutting or uniform shelter-
wood (Puettmann et al. 2008).

At the beginning of the 20th century, extensive 
reforestation plans were implemented in many 
European countries to reverse the trend. For 
example, 3.3 million ha were reforested between 
1938 and 1984 in Spain, 460,000 ha in Portugal 
and around 1.3 million ha in Italy during the 20th 
century (Pemán and Serrada 2017). These large 
national reforestation programs mainly used 
conifers (mostly pines) due to their ability to grow 
in degraded soils and harsh environments. Many 
reforested areas contributed to a general improve-
ment of environmental conditions, but the use of 
a single species over vast areas, together with 
the lack of subsequent management led to very 
homogeneous forests, often at excessive densities, 
with associated expansion of pests and a high risk 
of wildfires (Nocentini and Coll 2013; Guijarro et al. 
2017; Martín-Alcón et al. 2017).

Since 1990, overall forest area has increased 
by 0.67% yr-1 across the Mediterranean Basin 
(FAO and Plan Bleu 2018). Despite this generally 
increasing trend, forest loss and degradation still 
prevail around most of the Mediterranean Basin, 
especially in coastal areas, due to population in-
crease and urban expansion (FAO and Plan Bleu 
2018). Sharp differences can be observed between 
sub-regions. Almost all countries in the North ex-
perienced a huge increase in forest area, with rates 
around 1% yr-1 in Italy, France and Spain (Masiero 
et al. 2013), to which afforestation only contributes 
0.23% yr-1. The major part of this trend is due to 
the decline of agriculture and grazing and the con-
sequent abandonment of marginal lands that are 
colonized by forests, a process that has been stim-
ulated by European Common Agricultural Policy 
subsidies (FAO and Plan Bleu 2013, 2018). In con-
trast, on the southern Mediterranean shore, forest 
ecosystems are still at risk of fragmentation or 
disappearance due to human pressure from clear-
ing and cultivation, overexploitation of firewood 
and overgrazing (Gauquelin et al. 1999; Croitoru 
2007; Palahi et al. 2008; Djema and Messaoudene 
2009; Masiero et al. 2013; FAO and Plan Bleu 
2018). For example, Algerian forests decreased at 
a rate of 0.5% from 1990 to 2010 (FAO and Plan 
Bleu 2013) and a decrease rate of ~126,000 ha yr-1 

across North Africa has been estimated over the 
last 25 years (Keenan et al. 2015). This degradation 
continues despite forest representing 22% of the 
protected land area in North African countries 
(FAO and Plan Bleu 2018). However, many of these 
protected areas generally lack management plans 
or the resources to implement them (IPBES 2018).

Ecosystem services provision by Mediterranean 
forests
Mediterranean forests are complex and biodiver-
sity-rich socio-ecological systems, resulting from 
the coevolution of plants and societies through 
millennia of human perturbations and manage-
ment (Blondel 2006; Doblas-Miranda et al. 2015; 
Gauquelin et al. 2018). Currently, Mediterranean 
forests play a key role in the livelihoods of di-
verse communities across the Mediterranean by 
providing people with ecosystem services, food 
and products for home consumption and income 
generation. In particular, the provision of non-
wood forest products (NWFPs) and other services 
(e.g., watershed protection, soil erosion mitigation) 
(Merlo and Croitoru 2005; Croitoru 2007) stands 
out from the provision of wood forest products 
(WFPs) (FAO and Plan Bleu 2018). Removal of 
WFPs represents about 20 to 40% of the estimated 
total economy value in most northern countries, 
but less than 15% in most southern and eastern 
countries (Croitoru 2007). Northern Mediterranean 
countries dominate all areas of wood production, 
especially roundwood, pulpwood and derived 
products, with countries in eastern Mediterranean 
making a significant contribution to fiberboard 
production (Turkey produces 50% of the fiberboard 
products in the region) (FAO and Plan Bleu 2013). 
Production is low in the southern Mediterranean 
countries except for wood fuel, which constitutes 
one-third of the total production in the sub-region 
(FAO and Plan Bleu 2013), with firewood reaching 
80 to 100% of total removals in Tunisia, Morocco 
and Lebanon (Croitoru 2007). In any case, the 
overall production of WFP in the Mediterranean 
is insufficient to meet regional demands, making 
the region a net importer of wood and wood forest 
products (FAO and Plan Bleu 2013).

The main NWFPs of Mediterranean forests include 
cork, pine cones and pine nuts, mushrooms, 
chestnuts, honey, truffles, berries, acorns, carob, 
myrtle, rosemary, and other products. Most of 
these NWFPs are generally harvested, stored and 
consumed by local communities or constitute 
their main source of income (FAO and Plan Bleu 
2018). There is a significant geographical varia-
tion in production and consumption of NWFPs, 
largely dependent on the tree species available 
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in each country. Portugal is the main producer of 
cork (50 percent of total production), followed by 
Spain (30%), Morocco (6%), Algeria (5%), Tunisia 
(4%), France (3%) and Italy (3%) (APCOR 2015). In 
2016, the estimated annual export value of cork 
by Mediterranean countries was €1,295.8 million 
(APCOR 2015). Cork production is mostly concen-
trated in cork-oak savannas (also called dehesas 
or montados) that result from an intentionally 
induced simplification (both in terms of structure 
and species diversity) of the Mediterranean forest: 
human intervention reduces tree density, removes 
shrub cover and fosters the growth of grass. These 
are considered “biodiversity-based product sys-
tems” by the Convention of Biological Diversity and 
have a multi-functional character, contributing to 
the provision of other services such as fuelwood, 
acorns (to feed animals), carbon storage and 
pasture, while supporting important habitats for 
biodiversity (Bugalho et al. 2011).

Pine nut extraction (from stone pine Pinus pinea) 
generates an income of about €50-60 ha-1 yr-1 (for 
a cone yield of 200 kg ha-1 yr-1), which is higher than 
the revenue from timber (€20–30 ha-1 yr-1), fuel-
wood, and other products or uses (FAO and Plan 
Bleu 2013), where the most productive areas are 
Portugal and Lebanon, producing 4–7 t ha-1 yr-1. 
In Mediterranean Europe, mushroom picking is a 
recreational activity and mushrooms are marketed 
according to origin (e.g., France, Italy and Spain) 
rather than used solely as a direct food source for 
local communities (FAO and Plan Bleu 2018). The 
saffron milk cap (Lactarius deliciosus) and porcino 
(Boletus edulis) are the most important species 
commercially traded, along with the highly- 
valued black truffle (Tuber melanosporum) which is 
increasingly artificially inoculated on purposefully 
cultivated oak trees. In Turkey, where 90% of the 
total pine honey is produced (Pinus brutia and  
P. halepensis), the beekeeping sector is the main 
source of income for nearly 10,000 families in the 
region (Croitoru and Liagre 2013). In Morocco, 
for example, argan forests contribute to 7% of 
regional GDP and ensure subsistence for 14% of 
the rural population (Croitoru and Liagre 2013). 
Grazing in forested areas remains the main source 
of subsistence for local populations in Algeria, Mo-
rocco, Tunisia, Lebanon and Turkey (Daly Hassen 
2016). One the most recent marketed values of 
Mediterranean forests is their attraction for tour-
ism, sometimes to the detriment of other forest 
services (García-Nieto et al. 2013) or to the forest 
itself (Kuvan 2010).

Mediterranean forests also hold many important 
non-marketed values, mostly regulating services. 

Among these, one of the most relevant is wa-
tershed protection: forests regulate watershed 
hydrological regimes and protect against erosion 
and extreme flooding events while filtering and 
purifying water for its local consumption (Palahi et 
al. 2008; Guerra et al. 2016). Watershed protection 
is the single most valuable benefit from forests  
in Syria, for example, accounting for more than  
50% of the total economic value of forests  
(US$100 ha-1 yr-1). In the Maghreb countries, it 
is second in value only to grazing, varying within 
US$26-32 ha-1 yr-1 (Croitoru and Liagre 2013). 
Mediterranean forests play an important role in 
regulating micro-climatic conditions, atmospher-
ic composition, water and biochemical cycles 
(Peñuelas et al. 2017). They also represent a net 
carbon sink, helping mitigate climate change im-
pacts (Section 4.3.3). In 2005, the economic value 
of carbon storage in Mediterranean forests ranged 
between US$ 37 billion and US$ 63 billion, i.e., 13% 
of the forests’ total economic value, when assuming 
the SRES IPCC scenarios A1 and B1, respectively, 
for the 2050 horizon (Ding et al. 2010). However, 
carbon storage capacity by Mediterranean forests 
is strongly modulated by management (Seidl et 
al. 2014; Bravo et al. 2017). In fact, forests can act 
as carbon sources if disturbed, poorly managed, 
overexploited or burnt (Ding et al. 2010; Peñuelas 
et al. 2017).

Other societal values of Mediterranean forests 
include their cultural, spiritual and religious  
importance (especially for the few remaining  
ancient forests) (Mansourian et al. 2013) and their 
attractiveness (aesthetics) for recreational activi-
ties and tourism (FAO and Plan Bleu 2013; Bernetti 
et al. 2019; Raviv et al. 2020). Recreational uses of 
Mediterranean forests can lead to trade-offs with 
other services: for example, in Tunisia, the number 
of visitors to parks demanding recreational servic-
es from forests increased from 93,000 to 110,000 
between 1998 and 2014 (Daly-Hassen et al. 2017). 
In these areas, limiting the access to the public 
also limits soil erosion, one of the main explicit 
concerns of Tunisian forests (Daly-Hassen et al. 
2017).

Mountains

According to the UNEP definition, Mediterranean 
mountains cover some 1.7 million km2. Seven 
Mediterranean countries are among the top 20 
mountainous countries in the world, and half of the 
countries in the region have at least 50% of their 
land classified as mountain areas (Regato and 
Salman 2008). Mediterranean mountains exhibit 
similarities in their biotic, ecological, physical and 
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environmental characteristics but also significant 
differences (floristically, human colonization 
patterns, historic land uses and current anthropo-
genic pressures). Mediterranean mountains host 
many regional and local endemic species, some of 
which are relicts of past biogeographical patterns. 
Médail and Diadema (2009) identified 33 mountain-
ous areas within 52 refugia in the Mediterranean 
Basin. Some of these mountains had already been 
identified as regional biodiversity hotspots (Médail 
and Quézel 1999) and global centers of plant diver-
sity (Davis et al. 1994).

Historically, Mediterranean mountain forests have 
been crucial for the development of all civilizations 
and countries in the region. Most of the prehistoric 
populations of the Near East originated in Medi-
terranean mountain areas with very high plant and 
animal diversity, year-round water, shelter and 
suitable conditions for survival. Early mountain 
farmer-herders in the eastern Mediterranean and 
North African mountains changed pastoral and 
cropping patterns leading to the domestication 
of major livestock and domestic species but also 
important crops, including barley and wheat.

Land use changes in mountain regions
The long history of human intervention has modi-
fied land cover and resulted in numerous land use 
changes over time. Although Grove and Rackham 
(2003) support the resilience of modern Mediter-
ranean landscape to changes since ancient times, 
McNeill (1992) argues that for most of the moun-
tains, the changes that destroyed the environment 
and left behind skeletal landscapes are compar-
atively recent (past 200 years). Major land uses 
included woodcutting, pastoralism, agriculture 
and mining. Drivers of land use changes (north vs. 
south) included socio-political, economic, environ-
mental expansion vs. population decline, urbani-
zation and industrialization. The beginning of the 
20th century, marked the start of rural emigration 
from the mountains of northern Mediterranean 
countries that peaked after the Second World War, 
resulting in land abandonment and the remarka-
ble increase of forest cover seen in recent years. In 
southern Mediterranean countries, in contrast, an 
opposite trend is recorded due to the substantial 
increase in the rural population and consequent 
pressure on the mountains for arable and grazing 
land.

Recent land use changes have disrupted the tradi-
tional agro-silvopastoral equilibrium of the Medi-
terranean mountains. The increased forest cover 
in the northern Mediterranean has resulted in a 
decline in species and especially of habitat diver-

sity and an increase in natural hazards, especially 
forest fires, but increased carbon sequestration 
and decreased soil erosion and sediment trans-
port to the lowlands. The decrease in forest cover 
in the southern Mediterranean, on the other hand, 
has led to severe soil erosion.

The intensity and therefore impact of the principal 
human activities, i.e., agriculture, grazing and 
tourism, vary significantly from north to south of 
the basin. For example, agriculture was historically 
more important in the Sierra Nevada, the Lucanian 
Apennines of Italy and the Rif mountains than in 
Taurus mountains or the Pindos mountains (Mc-
Neill 1992). In addition, in Morocco the extensive 
deforestation of mountains has been reported as a 
result of an increasing rural population, intensive 
grazing and the end of traditional pastoral nomad-
ic migrations (Rejdali 2004). Regional differences 
have also been demonstrated in the case of Lefka 
Ori and the Psiloritis mountains in Crete where the 
opposite pattern was observed with abandonment 
mainly due to different grazing practices and 
number of stock density (Papanastasis 2012). This 
reflects the impacts of cultural practices (tradition) 
even within the same region (Regato and Salman 
2008; Papanastasis 2012).

Land use change is still considered a more immi-
nent threat in the short to medium term for moun-
tain areas compared to climate changes (Tasser et 
al. 2017). Abandonment of agricultural activities 
(including grazing) emerges as a common trend 
that can be identified in most of the Euro-Mediter-
ranean mountains as a result of rural depopulation 
which started in the 1950s, with plenty of examples 
from Spain, Italy and Greece (Papanastasis 2012). 
Typical countryside structures such as terraces 
and stonewalls are collapsing, soil erosion is 
increasing while secondary succession is taking 
place in addition to reforestation activities carried 
out to mitigate the effects of torrential floods with-
in rivers and ravines and to reduce the siltation of 
reservoirs within the valley bottoms (López-More-
no et al. 2008). Abandonment continues to date 
with farmlands abandoned as a consequence of 
migration to urban settlements in lowland areas, 
resulting in significant reduction in cultivation in 
the northern Mediterranean (Vicente-Serrano et 
al. 2004; Lasanta-Martínez et al. 2005). However, 
reports from Turkey support the argument that 
‘people are still in the mountains’ since the decline 
in forest cover is small compared to other areas 
in the Mediterranean (Kadioğullari and Başkent 
2008; Günlü et al. 2009) while in the Taurus, live-
stock husbandry is still very active (Kaniewski et 
al. 2007).
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Mountain biodiversity changes
Mediterranean mountains located on the borders 
of different biogeographical regions, and three con-
tinents, are biodiversity hotpots with a flora which 
comprises different phytogeographical elements 
ranging from Euro-Siberian to Arctic-Alpine, and 
Irano-Turanian in the eastern Mediterranean. This 
is particularly demonstrated in the mountain flora 
of Crete, Cyprus and Turkey. In the Mediterrane-
an Basin, with its long history of human activity, 
mountains are considered to be some of the last 
remaining wilderness areas with high landscape 
and biodiversity value providing a wide range 
of ecosystem services within and beyond their 
boundaries. Geology, tectonic activity, isolation and 
limited human activity explain the current bioge-
ographical patterns occurring in Mediterranean 
mountains. These patterns conform to theory, 
with mountains displaying low species richness 
but high endemism along altitudinal gradients. In 
recognition of their importance, a high number of 
protected areas and many mountainous areas are 
part of the UNESCO World Network of Biosphere 
Reserves (Sierra Nevada, Mount Olympus and 
Lefka Ori-Crete).

Community composition changes have been re-
corded both because of land use as well as climate 
change. The increased forest cover in the northern 
Mediterranean has resulted in a decline in species 
and especially of habitat diversity (Papanastasis 
2012). Altitudinal shifts have been already report-
ed from the Montseny mountains (Peñuelas and 
Boada 2003), as well as changes in the abundance 
of endemic species (Fernández Calzado et al. 2012). 
Community-level studies in Mediterranean moun-
tain ranges indicate that there will be colonization 
of high altitudes by subalpine species (Stanisci et 
al. 2005; Kazakis et al. 2007) or what Gottfried et  
al. (2012) have termed "thermophilization". There 
is already evidence in Mediterranean mountain 
areas of an increase in the frequency of extreme 
events, a direct result of climate change, mani-
festing itself as droughts and, sediment transfer 
(Maas and Macklin 2002).

Drylands and shrublands

Drylands are characterized by low precipitation 
levels which do not compensate for the evapora-
tive demands imposed by high temperatures and 
solar radiation, thereby exhibiting high aridity 
levels (MEA 2005; Reynolds et al. 2007). Dryland 
ecosystems have low productivity, which is often 
exacerbated by the highly irregular, low predicta-
ble pulses of rain, resulting in a long period during 
which soil moisture depletion with no restoration 

prevails. Low productivity generates relatively low 
plant biomass, which produces only small amounts 
of plant litter and leads to low soil organic contents 
(Safriel 2006).

Drylands are classified using the aridity index (AI 
related to the average ratio of annual precipita-
tion over potential evapotranspiration) developed 
by the United Nations (Middleton and Thomas 
1997) into four classes: hyper-arid (AI<0.05), 
arid (0.05<AI<0.20), semi-arid (0.20<AI<0.50), dry 
sub-humid (0.50<AI<0.65). In the Mediterrane-
an, drylands represent almost 80% of its area  
(Fig. 4.15a) from which 12.3% are classified as 
hyper-arid, 16.5% arid, 36.7% semi-arid and 14.5% 
dry-sub-humid (considering the boundaries of 
the Mediterranean SREX region defined in the 5th 
IPCC Assessment Report). Climatic constraints 
limit the productivity of drylands, increasing their 
susceptibility to wind and water erosion. These 
climatic limitations, coupled with intense human 
activity (e.g, agriculture, grazing and deforestation) 
has been leading to desertification and land degra-
dation particularly in the Mediterranean (Olsson et 
al. 2019) (Fig. 4.12).

The Mediterranean domain has undergone an 
overall increase in arid area of almost 15% (from 
64% to 78%) at the cost of the more humid arid-
ity classes (Daliakopoulos et al. 2017; Elsen et al. 
2017). Changes in land cover in drylands have both 
human-driven and climate variability as underlying 
causes and have resulted in extensive land aban-
donment especially after 1960 (Moreira et al. 2011; 
Stellmes et al. 2013). The depopulation of marginal 
areas includes the abandonment of extensively 
used agricultural areas, the discontinuation of tra-
ditional forms of land use, e.g., dehesas (wooded 
pastureland) and a decrease in livestock grazing 
(Delgado et al. 2010; Rescia et al. 2010). Moreover, 
extensive active afforestation measures resulted in 
an increase in forested areas (Valbuena-Carabaña 
et al. 2010).

Despite their relative levels of aridity, drylands 
contain a great variety of biodiversity, much of 
which is highly adapted to water-limited condi-
tions. As a result, there are many animal and plant 
species and habitats found only in drylands: some 
semi-arid and dry sub-humid areas are among 
the most biodiverse regions in the world (Gudka 
et al. 2014). Diversity is also high in drylands, for 
example between ecotones, areas of different arid-
ity, temperature or altitude. Species have adapted 
to these factors in many unique ways, creating a 
variety of habitats that are essential to the survival 
of species as well as to the livelihoods of people.
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Steppes occupy important areas (630,000 km2) of 
the arid zones of the Mediterranean Basin, from 
the Red Sea to southeastern Spain (Maestre and 
Cortina 2005). Subjected to strong human impact 
for millennia, they have been greatly modified. 
Moreover, some of them, especially the graminean 
steppe of Stipa tenacissima, are the consequence of 
the degradation of the former open forests. In the 
past, particularly at the end of the last glacial ep-
isode and during the following glacial-interglacial 
transition, steppes were important biomes repre-
senting a significant part of the global continental 
carbon reservoir.

Shrubland ecosystems account for a substan-
tial part of total land cover and are particularly 
relevant in arid, semi-arid, and dry-subhumid 
areas (Reynolds et al. 2007). Shrub-dominated 
ecosystems are increasing worldwide, a process 
with important implications for the structure and 
functioning of terrestrial ecosystems (Van Auken 
2000; Berlow et al. 2002; Anthelme et al. 2007). In 
shrublands, the dominant maquis has many local 
names reflecting indigenous and local knowl-

edge, such as macchia in Italy, matorral in Spain, 
phryganae in Greece or bartha in Israel. It is 
characterized by hard-leaved shrubby evergreen 
species of genera Cistus, Erica, Genista, Juniperus, 
Myrtus, Phillyrea and Pistacia. The term “garrigue” 
is restricted to the limestone, semi-arid, lowland 
and coastal regions of the basin and is maintained 
by grazing and fires.

Biological soil crusts are complex topsoil micro-
bial assemblages composed of eukaryotic algae, 
cyanobacteria, mosses, liverworts, fungi and 
lichens (Velasco Ayuso et al. 2017). They cover the 
uppermost mm of the soil surface in most arid 
and semi-arid ecosystems throughout the globe 
and are one of the most conspicuous and impor-
tant biotic components of these areas (Belnap 
and Lange 2013). They exert a strong influence on 
key ecosystem processes such as runoff (Alexan-
der and Calvo 1990; Belnap 2006), soil respiration 
(Maestre and Cortina 2003), nitrogen fixation and 
transformations (Belnap 2002; Castillo-Monroy 
et al. 2010), establishment and performance of 
vascular plants (Defalco et al. 2001; Escudero et 
al. 2007) and act as habitats for a dependent food 
web of arthropods, fungi, bacteria, and other soil 
organisms (Belnap and Lange 2013).

Dryland biodiversity also provides significant 
global economic values through the provision of 
ecosystem services and biodiversity products. 
Many cultivated plants and livestock breeds 
originate in drylands, providing a genetic reser-
voir whose importance is increasing as climate 
change drives the demand for new adaptations 
and extinctions of wild breeds. These services, 
such as cultural identity and spirituality are 
central to dryland cultures and can be integral 
to the protection of dryland ecosystems. There 
has been an observable correlation between land 
degradation and cultural degradation in drylands 
demonstrating their interconnectedness (Davies 
et al. 2012).

Agroecosystems

Agroecosystems support high levels of biodiversity 
and then a rich diversity of habitats and landscapes 
because of traditional, low-intensity and diverse 
agricultural systems (Levers et al. 2016). However, 
this biodiversity has declined dramatically since 
the early 1950s due to the intensification of agri-
culture, leading to an increase in highly modified 
agroecosystems and simplified and agricultural 
landscapes (Poláková et al. 2011). The common 
farmland bird index indicates a reduction in agri-
cultural biodiversity by 34% over the time period 
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Figure 4.12 | Change in the percentage of land-use 
change from 1961 to present in relation to desertifi-
cation and land degradation. Dryland areas were es-
timated using TerraClimate precipitation and potential 
evapotranspiration (1980–2015) to identify areas where 
the Aridity Index is below 0.65. Population data are from 
the HYDE3.2 database. Areas in drought are based on 
the 12-month accumulation Global Precipitation Clima-
tology Centre Drought Index. The inland wetland extent 
(including peatlands) is based on aggregated data from 
more than 2,000 time series that report changes in local 
wetland area over time (IPCC 2019).
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1989-201636. In agricultural landscapes, intensi-
fication of agricultural systems has generally in-
duced decreased crop diversity, decreased cover-
age of natural and semi-natural areas (hedgerows, 
isolated trees, ponds, permanent grasslands) and 
lower connectivity between the remaining natural 
and semi-natural habitats (Stoate et al. 2001, 
2009).

Agroecosystems provide important ecosystem 
services to society, but these are threatened by 
agricultural abandonment and intensification of 
agricultural practices. These threaten multifunc-
tional landscapes and erode the capacity to deliver 
ecosystem services, particularly regulating, and 
cultural ecosystem services (Nieto-Romero et al. 
2014; Balzan et al. 2020). Despite the increasing 
availability of literature about the topic, there are 
disparities in the availability of research about 
agroecosystem services within the Mediterranean 
region, in particular north-south trends. The lim-
ited availability of social research on the topic was 
identified in a review of Nieto-Romero et al. (2014). 
Most scientific studies focus on provisioning 
ecosystem services from intensely managed agro-
ecosystems, whilst regulating and cultural ecosys-
tem services were primarily studied in extensive 
agroecosystems (Nieto-Romero et al. 2014). These 
results are supported by recent literature, and a 
parallel can be drawn with the land-sparing vs. 
land-sharing debate (Phalan et al. 2011). Intensive 
agricultural districts, characterized by high land-
scape homogeneity, were shown to provide food 
products but are relatively poor in terms of capac-
ity to deliver other services in Barcelona (Baró et 
al. 2017). Extensive agriculture and semi-natural 
habitats in Malta and in Sardinia were associated 
with ecosystem service synergies indicating high 
landscape multifunctionality (Bagella et al. 2013; 
Balzan et al. 2018).

Approaches that maintain farmland biodiversity 
have been linked with an improvement in the 
delivery of regulation ecosystem services in Medi-
terranean climates. There is evidence that habitat 
management through the provision of non-crop 
plant resources (e.g., floral) and conditions can 
contribute to increased abundance and diversity 
of natural enemies, biological control and sup-
pression of crop pests when compared to lower 
biodiversity controls (Shackelford et al. 2017).

Agroecosystem development in different regions
The ongoing changes in Mediterranean agricul-
tural ecosystems are driven by the dynamics of 

the global market of food, energy and technology 
(e.g., seeds, feeds, fertilizers and agrochemicals) 
and by regional societal changes (Debolini et al. 
2018). A summary of these dynamics is necessary 
to understand and frame the ongoing changes of 
Mediterranean terrestrial ecosystems associated 
with agricultural systems (Section 3.2.1.1).

Agricultural systems of northern and south-
ern Mediterranean countries face contrasting 
challenges in relation to their diverse historical 
backgrounds and ecological constraints. On one 
side, particularly in southern Europe, farm aban-
donment in marginal land is associated with the 
bias introduced by the implementation of the Com-
mon Agricultural Policy (CAP) and post-socialism 
dynamics (Lasanta et al. 2017). Both external 
(migration, socio-economic model, public policies) 
and internal (local factors and characteristics 
of the agricultural holdings) factors trigger and 
control the land abandonment process, respec-
tively. Biophysical and socio-economic drivers 
are interlinked, and the outcomes are therefore 
very site-specific, depending on local contexts. 
Abandonment of agricultural activities has many 
landscape, ecological and socio-economic impli-
cations particularly during the transition process, 
which is still under way in many mountainous 
areas of Mediterranean Europe (Sirami et al. 2010; 
Alary et al. 2019). In Mediterranean Europe, the 
agricultural subsidies related to the CAP and the 
agro-environmental measures had contradictory 
effects on land abandonment over the years, which 
in the long run resulted in a sharp decrease in the 
number of farms and the increase in average farm 
size (Papadopoulos 2015; Lowder et al. 2016). In 
contrast, between 1960 and 2000, average farm 
size in North Africa decreased, becoming less than 
2 ha in around 70% of the farms operating less than 
10% of farmland, as 50% of the land is farmed by 
holdings above 10 ha in size. This is consistent with 
a global trend of farm size reduction in low- and 
middle-income countries (Lowder et al. 2016).

The contrasting evolution of agriculture between 
the northern and southern Mediterranean shores 
indicates the profound differences in socio-eco-
nomic and biophysical conditions driving agroeco-
system change. While in northern Mediterranean 
countries abandonment of mountain and marginal 
land and intensification of lowland and coastal 
areas is clear, in southern countries there is still 
high pressure from agricultural and grazing sys-
tems on lands that are vulnerable to land degra-
dation and desertification. In northern countries 

36 European wild bird indicators, 2018 update: https://pecbms.info/european-wild-bird-indicators-2018-update/
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the role of grazing livestock is strategic to mitigate 
the negative impacts of abandoned farmland (e.g., 
wildfire prevention). In southern countries, over-
grazing is still a core issue (Lasanta et al. 2015) 
with important impacts on biodiversity (Plieninger 
et al. 2013) and related ecosystem services (Hurni 
et al. 2015).

In many marginal agricultural areas of Mediterra-
nean countries, particularly in the north west, the 
abandonment of agriculture and livestock activities 
and the consequent forest transition is leading to 
the rapid expansion of wild fauna (e.g., wild boars, 
wolves, wild dogs) which is in turn negatively im-
pacting farming (e.g., increased production costs 
and lower competitiveness of the agricultural 
business) (Otero et al. 2015), and soil degradation 
(Mauri et al. 2019). The conservation of biodiversity 
and ecosystem services can emerge from the im-
plementation of adaptive management approach-
es, including monitoring of population dynamics 
and related environmental indices (Katona and 
Coetsee 2019). Abandonment is also generating a 
loss of plant biodiversity and cultural landscapes 
associated with grasslands and farmland fields 
(Malavasi et al. 2018) and the loss of valuable plant 
and animal germplasm selected over centuries 
for their adaptive capacity to these marginal lands 
(Bullitta et al. 2017), that is not of interest for in-
tensive farmland and hence is at risk of loss. The 
encroached abandoned croplands and grasslands 
become particularly vulnerable to wildfires, particu-
larly during the transition from grassland to forest, 
which in Mediterranean countries is represented 
by pyrophilous shrubby vegetation, particularly in 
oligotrophic soils (López-Poma et al. 2014; Bagella 
et al. 2017). In southern Mediterranean countries, 
overgrazing still prevails with impacts on soil deg-
radation (Martínez-Valderrama et al. 2018) that are 
compensated by the increasing import of feed for 
animal food supplementation, which has doubled in 
Northern African countries in the past two decades 
(FAO 2017).

A key issue related to the ongoing changes to 
Mediterranean agriculture is the impact of these 
changes on ecosystem water resources and the re-
lated hydrological cycle (Milano et al. 2013; Martín-
ez-Valderrama et al. 2018). In silvopastoral ecosys-
tems, the transition from grass to woody vegetation 
exacerbates the negative effects of increasingly 
frequent drought events and extreme heatwaves 
associated with ongoing climate changes (Rolo and 
Moreno 2019). Deep-rooted tall evergreen trees 
increase actual evapotranspiration beyond the ex-
pected increase of reference evapotranspiration due 
to increased temperatures. Land use abandonment 

therefore results in the loss of ground and surface 
water resources, which is expected just when more 
water is needed both for civil and agricultural uses 
(García-Ruiz and Lana-Renault 2011).

Agriculture absorbs 80% and 60% of total water 
demand in African and European countries sur-
rounding the Mediterranean Sea, respectively. 
Under business-as-usual trends, this demand is 
expected to rise as a consequence of temperature 
rise and higher drought frequency, resulting in 
higher evapotranspiration, while at the same time, 
groundwater recharge and runoff are expected to 
be reduced as a consequence of the altered water 
balance due the above-mentioned land use chang-
es in northern Mediterranean countries (García et 
al. 2017).

The intensification of agricultural activities in low-
land and coastal lands is also impacting biodiversity 
and ecosystem services as is the abandonment of 
marginal land. The impact of such intensification 
processes goes beyond provisioning services and 
the impact on agricultural biodiversity and multi-
ple regulating and cultural ecosystem services is 
one of the main focuses of the CAP reform debate 
in Europe (Nieto-Romero et al. 2014). In the fol-
lowing paragraphs we describe the dynamics and 
drivers of different Mediterranean agroecosystems 
to understand the implications for biodiversity and 
ecosystem services.

Perennial crops
In 2017, over 80% of the 10 Mha of olive harvested 
area in Mediterranean countries was located in 
Spain (25%), Tunisia (17%), Italy (13%), Morocco 
(10%), Greece (9%), and Turkey (8%). The harvest-
ed area is steadily increasing at a rate of some 
140 kha yr-1 because of the area increments in the 
MENA and North African countries, where many 
new plantations are increasing their productivity 
under introduced irrigation. However, the sustain-
ability of such irrigated croplands is sometimes 
questioned in the arid lands of North Africa by the 
use of non-renewable deep groundwater and the 
high cost of non-conventional treated wastewater 
or seawater desalinization (Mualla 2018). Crop 
yield of perennial crops is instead stable and rel-
atively high in European Mediterranean countries 
(Tanasijevic et al. 2014). In the case of grapes, 
the harvested area has declined from 200 kha to 
150 kha in the past 2 to 3 decades, but production 
is stable as crop yield increased from 7.5 t ha-1 in 
the 1990s to some 8.0-8.5 t ha-1 in recent years, 
again as a consequence of the improvement of ag-
ronomic techniques and the use of irrigation (data 
from FAOSTAT).
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Olives and vineyards are a fundamental part of 
the agricultural landscape and cultural heritage 
of Mediterranean croplands. In the traditional 
cropping systems, often based on some sort of 
agroforestry systems or, sometimes, agro-silvo-
pastoral systems, are designed for a mix of pro-
visioning services (food, wine, cork etc.), but they 
also provide unique habitats for agrobiodiversity 
and contribute to multiple ecosystem services 
(Cohen et al. 2015; Brambilla et al. 2017; Assandri 
et al. 2018). Almonds and other traditional fruit 
Mediterranean orchards, and agroforestry sys-
tems in many cases represent a traditional and 
cultural landscape (Moreno et al. 2018).

Vegetables
The production of fresh vegetables is increasing 
in some Northern African and Western Asian 
countries, particularly Egypt, Algeria, Israel and 
Turkey. In Egypt the area harvested has doubled 
in the last 10 years and now represents over 20% 
of the total harvestable area of fresh vegetables 
in the Mediterranean area, with just over 140 
kha, slightly higher than Italy, traditionally the 
first country in the Mediterranean. In all other 
southern European countries, the harvestable 
area of fresh vegetables has remained stable 
during the past three decades. The cultivation of 
vegetables is related to a wide range of farming 
systems, ranging from very small family farms 
for subsistence, mainly in the northern African 
and Near East countries, to very well-organized 
industrial horticulture value chains. An extreme 
example of industrial vegetable production is 
that of Almeria, in Southern Spain, where some 
30-40 kha of greenhouses for vegetables and 
ornamental plants in a very arid area (200 mm yr-1 
rain) are producing a gross value of some €1.5-
2.0 billion, 75% is generated through the export 
of fresh vegetables, primarily to northern Europe. 
These systems were developed relatively recently 
(the first greenhouse in Almeria was built in 
the 1960s) and rely on groundwater (80%), with 
potential overexploitation and salinization of aq-
uifers under way (Custodio et al. 2016). However, 
a novel bioeconomy model is being developed in 
Almeria, to increase its sustainability (Egea et al. 
2018). Such systems are increasingly growing in 
other countries, pushed by the demand for out-
of-seasons vegetables across Europe, which is 
sometimes considered more sustainable than 
domestic production (Tobarra et al. 2018).

Intensive vegetable cropping systems increase 
the supply of provisioning ecosystem services but 
impact biodiversity and may lead to trade-offs 
with other regulating and cultural ecosystem 

services (Balzan et al. 2020). For example, the 
introduction of irrigation in arid and semi-arid 
agroecosystems generates a deep transforma-
tion of habitat, species composition and related 
ecosystem services. The mismanagement of 
irrigation can lead to soil salinization and im-
pacts on agricultural biodiversity (De Frutos et 
al. 2015; Juárez-Escario et al. 2017). Intensive 
production sometimes includes the intensive 
use of agrochemicals with almost total control 
of weeds, pests and diseases. Furthermore, the 
industry includes investments in the development 
of new varieties characterized by tolerance or 
resistance to biotic and abiotic stress, reduction 
of harvesting costs, adaptation to long shelf-life 
and post harvest packaging, which in practice are 
reducing the diversity of varieties being grown. 
On the other hand, old varieties are often more 
suitable for organic farming systems and can 
provide valuable germplasm for future needs. 
Small holders therefore still represent a residual 
source of valuable germplasm that is at risk of 
extinction and deserves political attention. This is 
particularly true for Mediterranean germplasm 
that had been selected by farmers over centuries. 
Such farming systems therefore provide a valu-
able ecosystem service in terms of germplasm 
in situ conservation which is often linked to the 
cultural values of the traditional rural societies of 
the Mediterranean Basin.

Winter cereals
In Mediterranean countries, winter cereals often 
cover more than 50% of the arable land. Their im-
pact on agroecosystems and ecosystem services 
is therefore very relevant. However, the winter ce-
reals harvested area in the Mediterranean is gen-
erally declining, particularly in southern Europe 
(e.g., Italy) and is increasing in MENA countries 
(e.g., Egypt). In contrast, the grain yield is steadily 
increasing almost everywhere at an average rate 
ranging from less than +20 kg ha-1 yr-1 in North  
African countries to +40 to 60 kg ha-1 yr-1 in south-
ern and eastern Europe (FAOSTAT). Schils et al. 
(2018) have shown that the yield gap between 
actual and water limited yield potential for wheat 
is relatively low in central western Europe and is 
increasing in Mediterranean countries and east-
ern Europe, where crop stresses other than just 
water are still limiting actual yield. This decline 
in harvested area and increase in yield indicates 
that, in the past, winter cereals were grown on 
marginal land. This is certainly the case of EU 
countries where the CAP subsidies were coupled 
with winter cereal crops until the CAP reform in 
early 2000, with farmers also “growing the subsi-
dies” in unsuitable areas (Balkhausen et al. 2007).
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In Mediterranean agroecosystems, winter cereals 
are sown between early and late autumn and 
harvested in early summer. This guarantees soil 
cover and protection from erosion in winter and 
spring but as most winter cereal fields are tilled, 
soils are exposed to water erosion during the early 
stages of the crop, corresponding to the heavy 
rains that are frequent in the Mediterranean cli-
mate at the start of the season. Furthermore, with 
intensive crops the capacity of cereal seedlings in 
the early growth stages to uptake nitrate nitrogen 
is low, hence either nitrates derived from the 
natural mineralization of organic matter or from 
mineral fertilizers distributed before seeding can 
contribute to the contamination of groundwater. 
These processes are expected to increase due to 
increased temperatures leading to higher miner-
alization rates, and the higher frequency of heavy 
storms.

Grasslands and grazing systems
Mediterranean grasslands of the “old world” 
cover over 1 billion ha of land, mostly in the 
MENA regions. They host some 240 million dairy 
and meat sheep, 100 million dairy goats and 95 
million beef cattle, mostly based on livestock-ce-
real, agricultural and agro-silvopastoral systems 
(Porqueddu et al. 2016). Large-scale grazing sys-
tems in southern Europe have almost completely 
abandoned the traditional transhumant system 
and only few short-distance vertical movements 
between lowland and upland pastures are main-
tained (Caballero et al. 2011). Large-scale grazing 
systems in rangelands and common grasslands 
are always associated with specific grazing in-
stitutions, regulating grazing management and 
different arrangements between landowners and 
pastoralists. Such arrangements shape the co-
hesion of the local rural society, thus generating 
complex relationships between biophysical and 
socio-economic processes leading to more or less 
desirable outcomes at environmental and social 
scales (Caballero et al. 2011). In MENA countries, 
the grazing systems are still shaped by such 
dynamics and overgrazing is among the main 
drivers impacting land degradation and deserti-
fication, with site-specific issues that call for the 
development of integrated policy implementation 
frameworks (Middleton 2018).

In Mediterranean countries, livestock grazing sys-
tems are often well integrated with winter cereal 
cropping systems. Grazing can stimulate tillering 
and hence contribute to increasing the number of 
cereal heads per unit area. This practice is cou-
pled with early seeding, which can contribute to 
preventing soil erosion and nitrate leaching. Graz-

ing is suspended before heading and resumed 
after grain harvest, when grains losses and straw 
greatly contribute to animal feeding. 

Ecosystem services related to pollination
The decline of pollinators is largely seen across 
Europe (Biesmeijer et al. 2006; Potts et al. 2010; 
IPBES 2016), but it strongly contrasts with the 
steadily growing demand for pollination in crop pro-
duction (Klein et al. 2006; Aizen and Harder 2009; 
Garibaldi et al. 2013; Breeze et al. 2014; IPBES 
2016). Over the last five decades, agriculture has 
become increasingly pollinator-dependent, with a 
three-fold increase in the number of crops requir-
ing the intervention of pollinators (Aizen and Hard-
er 2009). The recommended number of honeybees 
and hives required to provide crop pollination (by 
considering the natural presence and action of wild 
pollinators) across 41 European countries rose 4.9 
times faster than honeybee stocks between 2005 
and 2010 (Garibaldi et al. 2013). As a result, 90% of 
the demand for honeybee stocks is not met in 22 
out of the 41 countries studied (Breeze et al. 2014).
The Mediterranean climate zone has the highest 
bee species richness in Europe, with the Iberian, 
Italian and Balkan peninsulas being the most 
important areas of species richness. Southern 
Europe also has the highest concentration of 
endemism, and threatened species. The high 
diversity of bees in the Mediterranean region is a 
consequence of the climate of the region and the 
associated resource heterogeneity, which provide 
optimal conditions for bee diversity. Petanidou et al. 
(2008) provide evidence of high temporal plasticity 
in species composition and interaction identity, in-
dicating that even flower visitation networks show 
high temporal variation. The main threat to Euro-
pean bees is habitat loss as a result of agriculture 
intensification and urban development, increased 
frequency of fires and climate change (Nieto et al. 
2015). Fires considerably change vegetation and 
land cover conditions, and can therefore have an 
important effect on pollinators and plant pollina-
tion (IPBES 2016). For example, fires in Mediterra-
nean oak-pine forests lead to an initial reduction 
of bee diversity in recently burnt areas. However, 
these areas recover in the following years, and 
this recovery is highly correlated to floral diversity 
(Potts et al. 2003). In Europe, 179 non-threatened 
species and two threatened species are regarded 
as under threat from an increased susceptibility 
to fire, whilst 113 non-threatened species and 23 
threatened species are regarded as threatened by 
climate change (Nieto et al. 2015).

Traditional and non-intensive agricultural practic-
es have a positive impact on agricultural biodiver-
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sity in the Mediterranean region (Sokos et al. 2013; 
Balzan et al. 2020). Similarly, several studies indi-
cate a positive effect of diversified farming systems 
and organic management related to conventional 
monocultures (Kennedy et al. 2013). In the me-
ta-analysis by Kennedy et al. (2013), Mediterranean 
organic fields were estimated to harbor 68% and 
56% higher bee abundance and species richness 
respectively when compared to conventional fields. 
This study also recorded a significant positive 
effect of landscape composition, with average 
increases of 129% and 41% in bee abundance and 
richness, respectively, for each 0.1 unit increase 
in the Lonsdorf Landscape Index (an ecologically 
scaled index of landscape composition) (Kennedy 
et al. 2013). The Middle East and Mediterranean 
Europe recorded higher monetary benefits in crop 
production that is directly linked with pollination 
services in comparison to other regions. This is 
mainly due to the cultivation of a variety of fruit and 
seed crops (IPBES 2016).

Freshwater ecosystems

Freshwater ecosystems, including streams, rivers, 
lakes, riparian areas and terrestrial wetlands, 
offer many important ecosystem services such 
as water supply for drinking, agriculture and in-
dustries (Brauman et al. 2007), water purification, 
erosion control (MEA 2005; de Groot et al. 2010), 
recreation, tourism and flood mitigation (Medi-
terranean Wetlands Observatory 2018). Humans 
have used these services for thousands of years, 
and in the process, have severely degraded these 
ecosystems (Zaimes and Emmanouloudis 2012; 
Geijzendorffer et al. 2019b). This is particularly 
true for the Mediterranean region that has been 
inhabited for thousands of years. The region is 
characterized by limited water resources and 
strong population growth (+70% increase in pop-
ulation since 1970 (UN 2013) and +30% in the last 
20 years (Abis 2006). Furthermore, substantial 
increases in seasonal tourism are forecasted 
in many Mediterranean countries (Burak et al. 
2004; Gober 2010), particularly in coastal regions, 
which can triple in population during the summer 
(Abis 2006; Collet et al. 2014). Overall, water de-
mand has doubled in the second half of the 20th 
century in the Mediterranean (Blinda and Thivet 
2009; Collet et al. 2013). Accelerated population 
growth, tourism and globalization are expected to 
further exacerbate agriculture, urbanization and 
subsequent pressures leading to an increase in 
water demand and to significant changes in water 
use patterns, thus affecting surface waters in the 
decades to come (Sala et al. 2000; Ferreira et al. 
2019; Mack et al. 2019).

River regulation
The highly irregular rainfall patterns and strong 
seasonal and annual variability of the flow re-
gimes of Mediterranean rivers and streams 
(Garofano-Gomez et al. 2011), along with the high 
topographic relief of many of its river (Grantham 
et al. 2013) have led to the building of more than 
3,500 dams in rivers during the 20th century (Cut-
telod et al. 2009; Lobera et al. 2016). Large dams 
regulate river flow hydrology and influence water 
chemistry, sediment dynamics, channel form and 
biotic communities, act as barriers to sediments, 
fish migration and vegetation propagules (Brier-
ley and Fryirs 2005; Charlton 2008), change the 
thermal regime, water quality and biogeochemical 
fluxes, thus impacting habitat availability and con-
nectivity along the fluvial continuum (Van Steeter 
and Pitlick 1998; Gasith and Resh 1999; Brierley 
and Fryirs 2005; Nilsson et al. 2005; Garde 2006; 
Garofano-Gomez et al. 2011; Bernal et al. 2013; 
Bonada and Resh 2013; Mediterranean Wetlands 
Observatory 2018). Reservoirs can reduce the  
sediment load up to 90% and change the flow from 
a flashy Mediterranean river to a more constant 
flow regime below the dam. Downstream, the main 
consequences of water with reduced sediment 
supply from upstream include: i) river channel 
degradation (e.g., bed incision), coarsening of the 
surface layer and channel narrowing; ii) ecological 
degradation, damaging the availability and quality 
of habitat for both the aquatic and riparian biota; 
and iii) reduction of the sediment supply to the de-
velopment of the river delta and hence accelerated 
coastal erosion (Kondolf 1997; Liébault and Piégay 
2001; Simon and Rinaldi 2006; Vericat and Batalla 
2006; Gendaszek et al. 2012; Lobera et al. 2016). 
The decline in river sediment inputs can be the  
result of human activities such as the stabilization 
of mountain slopes because of rural agriculture 
decline, rural exodus, reforestation and engineered 
torrent control (Provansal et al. 2014).

When considering all rivers, the total quantity of 
freshwater discharged into the Mediterranean 
each year (not including precipitation) has declined 
by about 45% during the 20th century (Section 
3.1.3). The reduction in river flows is a probable 
cause of the very unfavorable conservation status 
of the biodiversity dependent on rivers: 40% of the 
fish species found in Mediterranean wetlands are 
endangered (Mediterranean Wetlands Observatory 
2018; Fig. 4.13).

Groundwater depletion
The close connection between streams and aqui-
fers is responsible for base flow during periods of 
scarce recharge, controlling stream discharge as 
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well as other hydromorphological characteristics 
(Winter 1999; Woessner 2000; Menció and Mas-
Pla 2010). Human activities, such as groundwater 
withdrawal or major changes in land cover pri-
marily for agriculture, can result in a reduction 
of subsurface inflow to streams, changes in 
groundwater dynamics, and thus, loss of biological 
quality (Benejam et al. 2008; Menció and Mas-Pla 
2010). The needs for water abstraction have risen 
and it has become difficult to meet water needs 
(Qadir et al. 2007; Collet et al. 2013; Mediterra-
nean Wetlands Observatory 2018), which is also 
disrupting the functioning of surface irrigation 
(EEA 2018; Mack et al. 2019). This is particularly 
true for Mediterranean islands that are largely 
dependent on groundwater resources (MED-EUWI 
2007; Koutroulis et al. 2013). Exploitation of water 
resources causes changes in the water balance 
which leads to low or zero flows, especially during 
the summer, but also decreases surface water 
quality (Baldock et al. 2000; Moustadraf et al. 2008; 
Menció and Mas-Pla 2010).

Hydrologic regimes
Rivers and streams in Mediterranean areas are 
subject to naturally occurring high variability 
in their flow, with predictable seasonal distur-
bances such as floods and droughts (Menció and 
Mas-Pla 2010; Zaimes et al. 2010) (Section 3.1.3). 
They can experience wet winters and consequent 
floods to severe droughts in the summer, when 
intermittency in otherwise perennial systems 
can occur (Cid et al. 2017) (Section 2.2.5.3). In ad-
dition, Mediterranean regions are often rugged, 
marked by a notable altitudinal gradient between 
the headwaters and the outlet (Emmanouloudis 
et al. 2011). Mediterranean streams, located in 

high elevated areas experience annual rainfall 
exceeding 1,000 mm, and are characterized by low 
temperatures in winter with the chance of snow 
accumulation. This creates a typically bimodal pat-
tern in the flow regime, with the highest discharge 
following the onset of rain and following snowmelt 
in spring (Sabater et al. 1992), but maintaining a 
permanent flow throughout the year. In contrast, 
rivers located in semi-arid areas (low land areas), 
with mean annual precipitation ranging from 200 
to 500 mm, show a less permanent flow regime 
(many are intermittent and ephemeral) (Lobera et 
al. 2016).

Human competition for water enhances the nat-
ural deficit in water resources of the region, due 
to mean annual precipitation lower than the mean 
potential evapotranspiration (Gasith and Resh 
1999). Additionally, water diversion, damming, 
flow regulation, increased salinity, pollution and 
introduced species have also severely impacted 
Mediterranean freshwater ecosystems over time 
(Moyle 1995; Gasith and Resh 1999; Aguiar and 
Ferreira 2005; Hooke 2006). Overall, the discharge 
has decreased almost by half in many Mediterra-
nean catchments in the second half of the 20th 
century (García-Ruiz et al. 2011; Mediterranean 
Wetlands Observatory 2018). Mediterranean 
river ecosystems also have a highly endangered 
biodiversity, with 40% of the fish species being 
endangered (Mediterranean Wetlands Observatory 
2018), which cannot be dissociated from the long 
history of human disturbances (Zeder 2008; Feio 
et al. 2014).

Finally, while we are seeing decreases in water 
availability and runoff, urbanization and infrastruc-
ture have encroached river floodplains leading to 
higher exposure of both people and capital risk 
to flood damage (Geijzendorffer et al. 2019b). 
With climate change leading to more unpredict-
able flash floods, especially in intermittent and 
ephemeral torrents, the risk and potential damage 
of river floods has significantly increased in the 
Mediterranean Basin (Section 3.1.3.3).

Land-use changes, reduction of wetlands and 
riparian areas
In recent decades, coastal Mediterranean wetlands 
have suffered considerable pressures from land 
use change, intensification of urban growth, in-
creasing tourism infrastructure and intensification 
of agricultural practices (Sanchez et al. 2015). The 
recent Ramsar Global Wetland Outlook (Ramsar 
Convention on Wetlands 2018) highlights that the 
Mediterranean region, where water shortages co-
incide with demography, had total wetland losses 

Fl
ow

s 
in

 k
m
3/

yr

250

270

290

330

350

370

390

310

1960 Average
1960-1969

Average
1991-2000

2000

Figure 4.13 | Reduction in freshwater discharge 
flows into the Mediterranean for all rivers (Mediter-
ranean Wetlands Observatory, 2018).
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of 48% between 1970 and 2013 (significantly higher 
than other regions). In addition, 36% of assessed 
wetland-dependent animals in the Mediterranean 
are threatened with global extinction (Mediterrane-
an Wetlands Observatory 2018). Special attention 
should be given to temporary aquatic habitats that 
are characteristics of the Mediterranean region 
that provide flood control, groundwater recharge, 
toxin removal and recycling of nutrients (Balzan 
et al. 2019). Some temporary wetlands in the 
Mediterranean region are a priority habitat under 
the Natura 2000 Network (Natura code 3170, 92 
⁄ 43 ⁄ CEE, 21 May 1992) (Waterkeyn et al. 2010). 
Land use intensification in/and adjacent to rivers 
and streams has eliminated or simplified riparian 
the structural diversity of ecosystems (Robinson 
et al. 2002; Corbacho et al. 2003; Kingsford and 
Thomas 2004). These ecosystems have substantial 
fragmentation in the lowlands of Mediterranean 
areas primarily due to agriculture, compared to 
the mountainous areas that can have detrimental 
effects on their functionality (Zaimes et al. 2011). 
The maintenance and re-establishment of riparian 
ecosystems is a difficult but also an important 
task in southern Europe where most riparian 
ecosystems have experienced an extensive history 
of intensive land-use changes and other human 
disturbances (Corbacho et al. 2003; Zaimes et al. 
2010). 

The most important parameters for riparian veg-
etation were the distance from dams, the sea and 
rivers (Zaimes et al. 2019). Overall, the riparian 
vegetation of a Mediterranean Basin decreased 
with increasing drought, flow regulation and ag-
riculture (González et al. 2010; Bruno et al. 2016; 
Aguiar et al. 2018). Agriculture is the most impor-
tant stressor for riparian functionality in the Med-
iterranean. Agricultural land use and hydro-mor-
phological alteration intensification increases in 
Mediterranean and semi-arid areas (Nilsson and 
Berggren 2000; Allan 2004; Bruno et al. 2014a) led 
to a general decrease in both richness and ecolog-
ical condition. Agricultural land use was the main 
pressure explaining riparian richness and quality, 
whereas the responses of aquatic communities 
were highly related to hydromorphological alter-
ation. These basin-wide variables had a greater 
effect than variables operating on a local scale 
(Bruno et al. 2014b).

The riparian sites with the worst quality were near 
the river mouth and were characterized by an 
artificial and highly variable flow regime (Zaimes 
et al. 2011). This artificial flow variability as well 
as the presence of lateral structures in the river 
channel and geomorphological characteristics 

were the main factors driving the hydromorpho-
logical and floristic pattern in the regulated river. 
This flow-biota interaction is remarkable in Med-
iterranean rivers (Prenda et al. 2006) due to their 
high biological diversity and extremely variable 
flow regimes (Blondel and Aronson 1999; Naiman 
et al. 2008; Zaimes et al. 2010; Garófano Gómez 
2013). Many native species of riparian vegetation 
exhibit life cycles adapted to seasonal peak flows, 
the loss of which may hinder the regeneration of 
these riparian communities, reducing their growth 
rates or favoring the invasion of alien species (Poff 
et al. 1997). Lateral connectivity is also altered 
by the reduction of the frequency, magnitude and 
duration of events that periodically flood banks 
and floodplains (Charlton 2008), causing loss of 
native riparian vegetation (Burch et al. 1987; Garo-
fano-Gomez et al. 2011; Zaimes et al. 2019).

In conclusion, the loss of natural wetlands is a 
major concern, since their loss is nearly irrevers-
ible and leads to significant impacts on wetland 
biodiversity and ecosystem services. Restoration 
initiatives exist but have a low rate of success when 
it comes to re-establishing the same richness and 
stability that can be found in natural wetlands.

Water quality
Based on the Water Framework Directive (WFD; 
Directive 2000/60/EC), European Union (EU) coun-
tries are obligated to assess the ecological status 
of their freshwater ecosystems using biological 
indicators, as well as chemical, hydrochemical, 
and hydro-morphological parameters and to 
achieve good qualitative and quantitative status of 
all ground and surface water bodies (Van den Bro-
eck et al. 2015). Additionally, the new Groundwater 
Directive (GD; Directive 2006/118/EC) considers 
groundwater as a valuable natural resource that 
should be protected from deterioration and chem-
ical pollution (Menció and Mas-Pla 2010). How-
ever, a concern is that the WFD programs do not 
incorporate assessment techniques for temporary 
wetlands (Van den Broeck et al. 2015) whilst the 
links between water quality and ecosystem func-
tions and services, and the implications of water 
management on ecosystem services are either 
implicit or overlooked (Acreman et al. 2017). Out-
side of the EU, data on water quantity and quality 
are sparse and often biased. This is a real problem, 
where countries can affect both water quality and 
quantity flowing downstream to another country, 
as is the case for some rivers in the eastern part of 
the Mediterranean Basin. 

The global Sustainable Development of Agenda has 
included water as an important priority, and SDG6 
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emphasizes safe access to water and sanitation. 
Water quality is considered as a major environ-
mental problem across the Mediterranean region 
(Table 3.4, Section 3.1.3.5), with recent assessment 
indicating that the WFD has improved water quality 
in the European countries of the Mediterranean 
Basin while water quality has degraded further in 
North Africa and the Middle East (Mediterranean 
Wetlands Observatory 2018).

Freshwater species
Declines in the Living Planet Index (LPI) of Med-
iterranean wetlands was continuously observed 
between 1990 and 2008, after which it increased, 
but with varying results depending on the group 
and sub-region. Between 1990 and 2013 waterbird 
numbers show a positive trend and increased in 
Western Europe (+101%) and Northern Africa. 
However, more moderate increases were observed 
in the eastern Mediterranean (+27%) while declines 
have been observed in the Middle East since 2008. 
Contrastingly, declines in amphibians, reptiles, 
mammals and fish have been observed since 1990 
(Mediterranean Wetlands Observatory 2018). 

Freshwater communities of the Mediterranean re-
gion have adapted to the natural variability in water 
flows through shorter life spans, mechanisms to 
resist or avoid desiccation, and higher colonization 
rates (Lytle and Poff 2004; Bonada et al. 2007; 
Stromberg et al. 2008; Santos 2010). These Med-
iterranean communities are, therefore, different 
from those of temperate rivers, showing interan-
nual fluctuations in richness and composition and 
in trophic structure (Ferreira et al. 2001, 2002; 
Bonada et al. 2007; Feio et al. 2010, 2014). During 
dry seasons (predictable and periodical season-
al droughts), groundwater that flows towards 
streams is highly significant as it represents a 
unique input for water discharge, leading to steam/
river reaches that are permanent, intermittent or 
ephemeral (Uys and O’Keeffe 1997; Argyroudi et al. 
2009). Seasonal droughts can cause habitat loss, 
poor water quality and biotic interactions, but in 
severe droughts (longer, unpredictable, seasonal 
or supra-seasonal droughts) as expected due to 
climate change, major ecological effects will be 
observed, stressing and depleting both fauna and 
flora (Boulton 2003; Lake 2003; Bond et al. 2008; 
Menció and Mas-Pla 2010).

Mediterranean rivers present rich and dynamic 
riparian plant communities, which are highly inter-
connected with lateral and vertical ecotones and 
have multi-scaled biotic drivers that act in both 
space and time (Ferreira et al. 2019; Kontsiotis 
et al. 2019). Natural and human disturbances are 

entwined forces that shape riparian plant commu-
nities, to the point that undisturbed plant commu-
nities are difficult to find or characterize. Though 
there are few truly aquatic species, Mediterranean 
riparian plants nonetheless play an important role 
in stream functions (Zaimes et al. 2010; Magda-
leno and Martinez 2014). The protection of these 
species should be a priority in the region, and 
many riparian areas are included in the Natura 
2000 Network and the Ramsar Convention (Zaimes 
et al. 2010; Ferreira et al. 2019).

Freshwater ecosystems are under threat from 
the effects of multiple stressors, including non- 
indigenous species (Navarro-Ortega et al. 2015). 
Non-indigenous species are considered in the 
top five causes of biodiversity loss (Bruno et al. 
2019) and result in the accelerated impairment of 
aquatic and riparian habitats and their ecosystem 
services worldwide (Saunders et al. 2002; Dudgeon 
et al. 2006; Van den Broeck et al. 2015; Rouissi et 
al. 2018; Fraixedas et al. 2019). Their increase and 
expansion are due to the alteration of their hydro-
logic regimes, and biological and morphological 
functionality due to agriculture on the floodplain, 
channel diversions and dams, and increased  
pollution (Jiménez-Ruiz and Santín-Montanyá 
2016). Non-indigenous species in many cases can 
tolerate and adapt easier to the new conditions. 
Exotic species often thrive in Mediterranean rivers 
altered by human activity, further homogenizing 
river communities worldwide (Cooper et al. 2013). 
Alteration of the vegetative structure, competi-
tive displacement of native riparian vegetation, 
reduction of arthropod and avian diversities and  
abundances are some of the major impacts of 
non-indigenous species (Saunders et al. 2002; 
Herrera and Dudley 2003; Dudgeon et al. 2006; 
Bruno et al. 2019). Examples of non-indigenous 
species that are serious threats and problems 
in Mediterranean riparian areas are the Robinia 
pseudoacacia, Ailanthus altissima and Arundo donax 
(Constán-Nava et al. 2015; Bruno et al. 2019;  
Nadal-Sala et al. 2019). Examples of non-indige-
nous species that are serious threats and problems 
in Mediterranean wetlands include Myriophyllum 
aquaticum, Carpobrotus edulis and Cortaderia sel-
loana (Lastrucci et al. 2018; Chefaoui and Chozas 
2019; Company et al. 2019).

Protected areas (Natura 2000 network and Ramsar 
Convention)
In the European Union, the importance of con-
serving and protecting freshwater ecosystems 
is recognized through the many that have been 
designated as Natura 2000 sites (Iakovoglou et al. 
2013). Wetland protection is also officially a priority 
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for the 159 nations (as of 2009) that have ratified 
the Ramsar Convention, although wetlands still 
continue to be under threat of being drained and 
reclaimed (Ramsar Convention on Wetlands 2018; 
Geijzendorffer et al. 2019a). Degradation is closely 
related to the rapid increase in human population, 
and the increased input of nutrients, pollutants, 
and sediments, due to increases in urban devel-
opment, industry, agricultural activities, and water 
abstraction. The most obvious effect is the loss 
of biodiversity as a consequence of a reduction in 
area and the deterioration in conditions, especially 
in arid and semiarid regions (Brinson and Malvárez 
2002).

4.3.2 Projected vulnerabilities and risks

4.3.2.1 Forests

The interactions between different drivers of 
climate change (CO2, warming, reduced rainfall, 
increase in drought frequency and intensity) are 

predicted to have multiple, and sometimes antag-
onistic effects on the future condition of Mediter-
ranean ecosystems (Bussotti et al. 2014) (Fig. 4.14). 
While increasing atmospheric CO2 concentrations 
might directly promote forest productivity and 
growth (Sabaté and Gracia 2002; Keenan et al. 
2011), this effect will likely be strongly modulated 
by increasing temperatures and drought condi-
tions (Peñuelas et al. 2011; Bussotti et al. 2014; 
Doblas-Miranda et al. 2017; Lo et al. 2019). For 
pine and oak-dominated Mediterranean woodlands  
in Israel, Helman et al. (2017) projected that 
warming scenarios of 1 and 2°C could lead to 16% 
and 31% reductions of annual gross ecosystem 
productivity, respectively, despite the increase in 
atmospheric CO2.

Warmer and drier conditions also alter plant phe-
nology (i.e., leaf unfolding, flowering and fruiting), 
usually lengthening the growing season (Peñuelas 
et al. 2004), with direct consequences on forest 
productivity and growth (Kramer et al. 2000). Al-
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Figure 4.14 | Tree- and ecosystem-level responses in Mediterranean forests to environmental changes associat-
ed with climate change and their impacts on ecosystem service (ES) provision. Adapted from Figure 1 in Bussotti et 
al. (2014) and based on the reviews by Doblas-Miranda et al. (2017) and Peñuelas et al. (2017, 2018).
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though a longer growing period may be positive 
for forest growth, advanced spring phenology may 
also cause higher risk of frost damage (Mutke et 
al. 2005), as well as increased transpiration. More-
over, global warming also changes bird migrations 
and dates of insect outbreaks, leading to a decou-
pling of species interactions (e.g., decoupling of 
predator-insect interactions reduces the effective-
ness of pine processionary moth control by birds; 
(Barbaro and Battisti 2011). All factors considered, 
we can expect a general reduction of site produc-
tivity in the mid- and long-term, particularly for 
species or populations growing in water-limited 
environments, which constitute the majority of 
Mediterranean forests (Sabaté and Gracia 2002; 
Bravo-Oviedo et al. 2010).

Changes in forest ecosystem health and 
ecosystem services provision

There is evidence that Mediterranean forests 
and woodlands now experience climate-driven 
declines in growth and die-back episodes from 
drought and heat stress (Allen et al. 2010; Lindner 
et al. 2010; Anderegg et al. 2013; Gentilesca et 
al. 2017; Klein et al. 2019), similar to shrublands 
(Lloret et al. 2016; Sapes et al. 2017). Increasing 
crown defoliation and soil respiration may reduce 
net primary production and ultimately limit growth 
in Mediterranean forests, associated with higher 
mortality and dieback, especially if warming is 
combined with drought (Peñuelas et al. 2018). 
The combination of reduced water availability and 
increased respiration rates of tissues due to rising 
temperatures can result in hydraulic failure, the 
exhaustion of reserve carbohydrates and a general 
weakening of the trees, also making them more 
vulnerable to pests and pathogens (Rennenberg et 
al. 2006). Drought has been linked to the general 
dieback of Quercus ilex and Q. suber in southwest-
ern Spain, where, known as “seca”, the weakened 
trees are more susceptible to the attack of the fun-
gus Phytophthora (Sánchez-Salguero et al. 2013). 
Although even drought-adapted ecosystems are 
influenced by growth reductions, these phenome-
na are expected to become particularly frequent in 
the trailing-edge of species distribution (Jump et 
al. 2006; Sarris et al. 2011), or for species found 
in the Mediterranean Basin, the southern limit of 
their European distribution (Linares et al. 2010; 
Dorman et al. 2013), which are particularly vul-
nerable (e.g., Pinus pinaster, P. nigra, P. halepensis, 
P. sylvestris, Quercus ilex, Q. suber, Fagus sylvatica, 
Abies alba, A. pinsapo, Juniperus phoenicea, Cedrus 
atlantica), and especially in dense, unmanaged 
forests (Lindner and Calama 2013) or in sites with 
shallow soils (Lloret et al. 2004).

This additional climate stress may lead to im-
portant changes in biotic interactions, affecting 
forest composition and species distribution (see 
next section). For example, in southern Spain, in 
a mixed Abies pinsapo–Pinus halepensis forest, A. 
pinsapo showed sudden growth reductions under 
drier conditions, while pine trees were able to 
maintain almost constant growth values and lower 
water costs under increasing long-term water 
stress (Linares et al. 2011). Similarly, Sarris et 
al. (2011) reported that where mixed Abies ceph-
alonica–Pinus halepensis forests exist in southern 
Greece, Pinus did not experience any mortality at 
this altitude (800 a.s.l.) after drought events, un-
like Abies. Prolonged droughts and hot spells will 
aggravate the risk of forest fires, which can further 
induce problems of soil erosion and fertility. In fact, 
fire-drought interactions can be complex and trig-
ger vegetation transitions, disrupting ecosystem 
resilience and even leading to non-forest states 
(Batllori et al. 2019). In the driest areas, desertifi-
cation can advance and become a major problem 
(Karavani et al. 2018a).

Climate change is also expected to affect host 
plant-pest interactions, favoring the establishment 
of new ones (Lindner and Calama 2013). Warming 
already causes changes in the distribution areas 
of pests, mostly upward and northward. An ex-
ample is the pine processionary moth (Thaumet-
opoea pityocampa), which is expanding upwards 
in several mountain ranges due to milder winter 
temperatures, affecting tree populations that had 
previously never been exposed to this insect (Hódar 
and Zamora 2004; Battisti et al. 2005; Roques et 
al. 2015). The succession of several years of mild 
winters has favored unprecedented outbreaks 
in northeastern Spain (Roques et al. 2015). Op-
portunistic fungi and insects such as Armillaria 
or Ips spp. are also being favored by warmer 
temperatures, which induces better conditions for 
survival, allowing them to complete more than one 
generation in one year (Lindner and Calama 2013). 
The greatest impacts are expected to arise from 
the establishment of alien pests and diseases, i.e., 
those that are exogenous to a given environment. 
The number of alien pests is expected to increase 
under warmer and drier conditions, as has been 
the case with the pine nematode (Bursaphelenchus 
xylophilus), native from North America, and with 
the potential to spread across Europe (de la Fuente 
et al. 2018) and cause massive wilt and mortality in 
pine species (Vicente et al. 2012).

All these changes may ultimately lead to profound 
changes in ecosystem function and associated 
ecosystem services (Seidl et al. 2014; Peñuelas 
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et al. 2017). Changes in carbon storage and water 
availability are especially important for their im-
plications in all forest services, because they are 
the basis of the primary production that supports 
the services (e.g., timber production) and be-
cause of the effects they have on climate change 
(Peñuelas et al. 2017; Ruiz-Peinado et al. 2017). 
Increased plant evapotranspiration will decrease 
the movement of water from forest to downstream 
ecosystems (Peñuelas et al. 2018), compromising 
supporting services (e.g., water cycle), provision of 
habitat for aquatic species and water availability 
for consumptive uses. Severe summer droughts 
can reduce the yields of economically relevant 
NWFP such as cork (Oliveira et al. 2016) and pine 
nuts (Mutke et al. 2005).

The response of some forest ecosystem services 
to climate change drivers is still under debate. 
For example, despite the fact that some studies 
have highlighted that mushroom productivity in 
Mediterranean ecosystems may be experiencing 
a sharp drought-induced decrease (Boddy et al. 
2014; Ágreda et al. 2015) due to delayed phenology 
in the autumn season under warmer and drier 
conditions (Kauserud et al. 2012; Büntgen et al. 
2015), simulations by Karavani et al. (2018b) rather 
point towards an increase in production of edible 
and marketable species under climate change 
scenarios as a consequence of the longer mush-
room season. The leisure use of Mediterranean 
pine forests (for walking, mountain biking hunting, 
etc.) will probably be negatively affected by the 
increasing incidence of pest outbreaks of the pine 
processionary moth (Morán-Ordóñez et al. 2019), 
as this species is responsible of strong allergic 
reactions in humans (Battisti et al. 2017). However, 
simulation studies in Mediterranean forests (Mina 
et al. 2017) suggest that forest management (i.e., 
silvicultural interventions) might have a prevailing 
role over climate in determining the future condi-
tion of forests and the provision of their associated 
ecosystem services. This has also been reported in 
other forest systems across the globe (Albrich et 
al. 2018; Schwaiger et al. 2019).

Besides the direct impacts of climate change driv-
ers on the condition of tree species and ecosystem 
services provision, climate change drivers might 
push Mediterranean forests past critical thresh-
olds (e.g., changes in community composition, 
loss of ecosystem functions), which could hamper 
their capacity to recover from disturbances in 
the future (Anderson-Teixeira et al. 2013). For 
example, Mediterranean water-stressed forests 
are likely to become more vulnerable to pests and 
pathogens (Lindner and Calama 2013; Gauquelin 

et al. 2018), as well as to other disturbances such 
as fire. Post-fire regeneration might be limited 
under water-limited conditions, ultimately leading 
to deforestation or transition from oak and pine 
forest to shrublands (Karavani et al. 2018a), there-
by decreasing the overall capacity of the region to 
sequester atmospheric CO2 and potentially losing 
the recreational value of affected areas (Peñuelas 
et al. 2017).

Changes in species range, abundance and 
extinction

Climate change is predicted to induce changes 
in the geographic ranges for many terrestrial 
species across the Mediterranean Basin (expan-
sion, shrinkage, geographic shifts), with studies 
showing contrasting predictions depending on the 
modelling approach, the drivers and the scenarios 
considered, even when predictions are made for the 
same species and the same region. For example, 
on the basis of a process-based model, Keenan et 
al. (2011), predicted that around 40% of the current 
suitable stand locations of Quercus ilex in Spain will 
become unsuitable for the species during 2050-
2080 under a non-Paris agreement compliance 
warming scenario (3.1°C) whereas Lloret et al. 
(2013), predicted an increase in climatic suitability 
for the same species, region, scenario and time 
horizon on the basis of a correlative model.

The EU Mediterranean biome was predicted to be 
the most vulnerable region to plant species loss 
and turnover in a study by Thuiller et al. (2005), 
who simulated climatically determined geographic 
range loss of 1,350 European plant species under 
seven climate change scenarios (IPCC AR4 SRES 
scenarios predicting temperature increases rang-
ing from 1.8 to 3.6°C), with climate-related range 
contractions already reported in Mediterranean 
mountains (Pauli et al. 2012). Consistent patterns 
have been forecasted for other taxonomic groups. 
For example, using bioclimatic envelope models 
and ensemble forecasting of SRES scenarios, Lev-
insky et al. (2007) and Barbet-Massin et al. (2012), 
predicted losses up to 100% and 30% of current 
potential species richness of mammals and bird 
species in EU Mediterranean, respectively, for the 
end of the century. In general terms, species at the 
rear edge of their distribution in the Mediterranean 
(e.g., deciduous temperate species like Quercus pe-
traea) and mountain species (e.g., Pinus sylvestris, 
Abies alba) will be the species most threatened by 
climate change (with ranges potentially shrinking), 
whereas the most xeric Mediterranean species, 
which are better adapted to drought, are those 
expected to encounter fewer problems for survival 
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and range expansion under future climate change 
(Ruiz-Labourdette et al. 2012; Lindner and Calama 
2013; Bussotti et al. 2014).

Projections of species range losses due to climate 
change across the Mediterranean cannot be taken 
as precise forecasts given the uncertainties in 
climate change scenarios. Only a few forecasting 
studies have assessed the interactions of climate 
change with other drivers (Morán-Ordóñez et  
al. 2019), there is therefore a risk that the vulner-
ability of species to other important disturbances, 
such as land use change, fires and their syner-
gistic effects, is underestimated (IPBES 2019). An 
additional caveat for studies projecting changes  
to climatic range is that generally these do not 
incorporate the role of interactions between spe-
cies or the effects of extreme weather events, the 
latter of which is of great relevance in the context 
of Mediterranean forest systems.

Fire activity and burnt areas across the 
Mediterranean

The Mediterranean Basin can be considered as a 
hotspot under future climate conditions conducive 
to extreme wildfire events, with significant poten-
tial impacts for human well-being (Bowman et al. 
2017). How exactly climate change will influence 
future fire regimes is still under debate. While a 
warmer and drier climate will upsurge fire activ-
ity by increasing water demand and decreasing 
fuel moisture, increasing temperatures may also 
negatively affect ecosystem productivity and lead 
to an overall reduction of fuel biomass, which can 
counteract warming effects on fire activity (Batllori 
et al. 2013). Drought increases terpene emissions 
from Mediterranean plants, which are compounds 
that play a key role in the flammability of forests 
(Peñuelas et al. 2018). Warming conditions also 
increase emissions of other volatile organic com-
pounds (VOCs) besides terpenes, with multiple 
physiological and ecological functions (e.g., plant 
defense, communication with other organisms) 
that, in a cascade effect, can affect communities 
of organisms, ecosystems, atmospheric chem-
istry and even meteorological conditions, even 
potentially generating feedbacks to warming 
(Doblas-Miranda et al. 2017; Peñuelas et al. 2017)  
(Fig. 4.14).

The increase in exposure to large wildfires in 
recent years (Bowman et al. 2017), along with the 
effects of climate change, might still overcome 
current fire prevention efforts. More and different 
fire management approaches must therefore be 
considered in order to increase our resilience 

towards future Mediterranean forest fires (Moritz 
et al. 2014; Turco et al. 2018a). Projections indicate 
an increase of burned areas across the Mediter-
ranean in the future, but it is difficult to compare 
estimates given the variation between scenarios, 
future periods and models used. For example, Am-
atulli et al. (2013) estimated increases of up to 66 
and 140% in burnt area in EU-Mediterranean coun-
tries in 2071–2100 relative to 1985–2004 under the 
IPCC SRES scenarios B2 and A2, respectively, and 
Migliavacca et al. (2013) estimated a 34% increase 
in burnt area in southern Europe, in 2070–2100 
relative to 1960–1990 under the A1B scenario. 
Turco et al. (2018b) projected future summer 
burned area in Mediterranean Europe under 1.5, 
2, and 3°C global warming scenarios, concluding 
that the higher the warming level, the greater the 
increase in burned area, ranging from a ~40% 
(1.5°C scenario) to ~100% (3°C scenario) increase 
from current levels across the scenarios. Although 
the future total burnt area could be smaller if a 
stationary relationship between drought and fires 
is assumed, in all the cases the burned area is still 
expected to increase with warming. Significant 
benefits (regarding burnt area reductions) would 
be obtained if warming were limited to well below 
2°C (Turco et al. 2018b). These benefits extend 
beyond plant cover protection or human safety. A 
reduction of burned areas also reduces risks of 
soil erosion and desertification, especially in very 
dry areas (Shakesby 2011).

4.3.2.2 Mountains

Many of the key observed and projected climate 
changes identified for southern Europe by EEA 
(2017) apply in the case of Mediterranean moun-
tains, including: (i) significant increase in heat 
extremes, (ii) decrease in precipitation and river 
flow, (iii) increasing risk of droughts, (iv) increasing 
risk of biodiversity loss and (v) increasing risk of 
forest fires. For Mediterranean mountains, projec-
tions indicate warming between 1.4°C and 5.1°C 
for 2055 (1.6°C and 8.3°C for 2085) and a decrease 
in precipitation, mainly during spring (-17% under 
A1fi and -4.8% under B1 for 2085) (Nogués-Bravo 
et al. 2008).

Mediterranean mountain environments seem 
to be accelerating towards uncertain ecological 
states because of changes associated with cli-
mate and land use changes (Nogués-Bravo et al. 
2008). For the 21st century, projected warming and 
reduced rainfall are likely to affect: (i) snow pack 
and glaciers, which provide key habitats for alpine 
specialist species and, (ii) water availability and 
river discharge and therefore aquatic and wetland 
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habitats and species. Beyond these indirect effects 
of climate change in biodiversity, climate change 
would, (iii) reduce habitat availability of alpine and 
sub-alpine belts, increasing the risk of extinction 
for endemic species or range-restricted species 
and may well disrupt the biological networks 
that ultimately support ecosystem functioning 
(Nogués-Bravo et al. 2008).

Mediterranean mountains are susceptible to forest 
fires and are vulnerable to hydro-geological risks 
(floods, landslides, infrastructure damage). Most 
of these hazards will be increased by the predicted 
rise in temperature and changes in precipitation 
patterns. Mediterranean mountains provide basic 
water-based ecosystem services. Therefore, water 
management and quality-assurance policies need 
to consider the specific features of mountains 
and predicted climate change trends. In mountain 
environments, changes in precipitation (amount 
and pattern) will be influenced by local geomor-
phology and therefore predictions are subject to 
high uncertainty and variation at local and regional 
scales. Local climate change adaptation strategies 
require careful consideration in order to counter-
act specific pressures.

The homogenization of Mediterranean mountain 
landscapes due to the abandonment of agropasto-
ralism has negative impacts on biodiversity, water 
resources, soils and natural hazards (Vogiatzakis 
2012). For many species in Mediterranean 
high-altitude zones, including cedars in Cyprus 
and Lebanon, migrating upwards is not an option 
(Fernández Calzado et al. 2012). For other species, 
such as junipers, climate change and increased 
fires have adverse effects on regeneration, which 
is already limited by the environment (Vogiatzakis 
2012). Fire events are likely to increase in number 
and intensity in Mediterranean mountain forests 
and will be associated with elevational shifts of 
dominant tree species (Fyllas and Troumbis 2009; 
Pausas et al. 2009). Reduced depth and persis-
tence of snow cover will also affect high mountain 
vegetation (García-Romero et al. 2010).

4.3.2.3 Drylands and shrublands

There is high confidence in observed drought in-
creases in the Mediterranean and West Africa and 
medium confidence that anthropogenic climate 
change has contributed to increased drying in 
the Mediterranean region and that this tendency 
will continue to increase under higher levels of 
global warming (Koutroulis 2019). According to 
global warming levels of 1.5°C, 2°C and 4°C above 
pre-industrial temperatures, Mediterranean land 

will shift to drier types by 11.6%, 20.1% and 41.3% 
respectively (Fig.4.15b-d). With a 2°C global tem-
perature rise, annual warming over the world’s 
drylands is expected to reach 3.2°C–4.0°C, imply-
ing about 44% more warming over drylands than 
elsewhere (Huang et al. 2016), thus potentially ag-
gravating water scarcity issues through increased 
evaporative demand. The Mediterranean, North 
Africa and the eastern Mediterranean will be par-
ticularly vulnerable to water shortages, and expan-
sion of desert terrain and vegetation is predicted to 
occur in the Mediterranean biome, an unparalleled 
change in the last 10,000 years (medium confidence) 
(Guiot and Cramer 2016). At 2.5°C–3.5°C, risks are 
expected to become very high with migration from 
some drylands resulting as the only adaptation 
option (medium confidence). Scarcity of water for 
irrigation is expected to increase, in particular in 
Mediterranean regions, with limited possibilities 
for adaptation (Haddeland et al. 2014; Malek and 
Verburg 2018).

Mediterranean drylands are relatively resilient 
systems with a certain capacity to recover from 
various forms of disturbance that have occurred for 
millennia, such as fires, overgrazing and drought 
(García-Romero et al. 2010). Nevertheless, these 
ecosystems face critical thresholds with potential 
catastrophic shifts that may trigger biological 
diversity losses and modifications in ecosystem 
functioning and services (Daliakopoulos and Tsanis 
2014). The resilience of Mediterranean drylands 
is currently under pressure from various factors, 
such as high permanent and seasonal population 
density, abandonment of traditional practices, con-
tinued habitat conversion (2.5% of Mediterranean 
habitat was lost between 1950 and 1990) and loss 
of the typically high spatial natural heterogeneity 
(Fahrig 2003). Although vegetation recovery both 
from shrubs and forest can reduce soil erosion 
and enhance carbon sinks, it might change the 
cultural landscapes frequently developed from 
initial mosaics of different land-use types towards 
homogenized states with dense shrubs (Stellmes 
et al. 2013). Increases in woody biomass and the 
loss of gaps and breaks as well as edges between 
different fuel types make these landscapes more 
vulnerable to fires compared to disconnected 
patches of forest, shrub and cultivated fields or 
grasslands (Puigdefábregas and Mendizabal 1998; 
Viedma et al. 2006; Röder et al. 2008), in particular 
during drought (Viegas 1998; Duguy et al. 2007).

Since 1960, wildfire occurrence in many Mediterra-
nean drylands has increased because of changes in 
land use. The level of soil degradation due to these 
fires depends on fire recurrence, topography, the 
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Figure 4.15 | (A) Distribution of drylands and their subtypes based on observations (reanalysis combined with 
station and satellite observations) for the 1981-2010 baseline period. Areal coverage (percentage) of drylands per 
subtype is presented in the form of pie charts and is calculated within the boundaries of the Mediterranean SREX 
region (dashed line). (B, C, D) Distribution of projected dryland transitions according to RCP8.5 for three Global 
Warming Levels (GWLs: +1.5°C, +2°C and +4°C from preindustrial levels), relative to the baseline (1981-2010) period, 
using the high-resolution atmosphere-only version of the HadGEM3A model. Grey shaded areas in (b), (c) and (d) are 
drylands of the baseline period. Chord diagrams denote the areal extent (fraction of MED SREX land area) of projected 
transitions in each dryland subtype under the three GWLs. The size of the chord diagrams is proportional to the total 
areal extent of the MED land changing to drier types. Figure adapted from (Koutroulis 2019).
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intensity of soil erosion processes and post-fire 
plant cover regeneration rate (Caon et al. 2014). To 
promote the accumulation and retention of nutri-
ents in soil after a fire, it is important to stabilize 
the burnt site by applying post-fire measures that 
limit soil erosion, surface runoff and loss of the 
ash due to wind. Depending on the plant species 
and the time that elapses between consecutive 
wildfires, fire is responsible for the transition from 
forests to shrublands, which are poorer in soil 
nutrient status. High fire frequency may cause 
the eradication of keystone species, which has 
consequences for soil nutrient pool recovery (Caon 
et al. 2014). In addition to the increased risk of soil 
erosion, frequent wildfires also induce changes in 
the water cycle by altering the infiltration capacity 
of soil and increasing soil hydrophobicity (Vallejo 
and Alloza 1998; Fernández et al. 2012; Carreiras 
et al. 2014).

Droughts

Mediterranean shrublands are experiencing im-
portant episodes of drought-induced die-back 
explained by the decrease in climate suitability for 
plants during the drought event (Lloret et al. 2016; 
Sapes et al. 2017). In anticipation of a drier climate 
and to project future changes in dryland dynam-
ics, it is imperative to understand species-specific 
differences in drought resistance (Väänänen et al. 
2020). In the long rainless eastern Mediterranean 
summer, it was found that the physiological traits 
of species exhibiting different levels of mortality 
and co-existing in the same habitat (Phillyrea latifo-
lia, Pistacia lentiscus and Quercus calliprinos) were 
more associated with drought resistance strate-
gies rather than actual drought stress experienced 
by the plants (Väänänen et al. 2020). The intensity of 
drought effects on shrub performance is thus spe-
cies-specific, and plant species combination-de-
pendent. High shrub richness levels modulate the 
negative impacts of aggravated drought conditions. 
Results point to a probable shift in interspecific 
relationships in response to water shortage. As 
drought impacts are not mediated in low-diversity 
communities, species-specific responses to drier 
conditions could lead to shifts in plant community 
composition favoring the most drought-resistant 
species such as oaks and rosemary. Maintaining 
high diversity appears critical to mediate drought 
effects for less resistant species (e.g., Cistus and 
Ulex) (Rodriguez-Ramirez et al. 2017).

4.3.2.4 Agriculture and pasturelands

The ongoing changes to agricultural systems in 
the Mediterranean Basin are the outcomes of a 

combination of climate and other drivers that in-
fluence farmers’ perceptions and choices (Fahrig 
2003; Nguyen et al. 2016), which in turn trigger 
changes in agroecosystems and their service pro-
vision at different scales. These processes have 
a strong site-specific component with a common 
background of multiple pressures including global 
and climate changes (Kummu et al. 2017).

Mediterranean agriculture is generally vulnerable 
to shocks in the flow of agricultural commodities, 
particularly in southern countries, because of 
the heavy dependence on imports (Capone et al. 
2014). This is coupled with expectations of future 
adverse climate impacts leading to the decrease 
of water-limited crop yields (Schils et al. 2018), 
increase in irrigated crop water demand, increas-
ing risks in livestock production and mortality 
associated with heatwaves, expansion of habitats 
for southern disease vectors and increases in 
multiple climate hazards (EEA 2017). These im-
pacts hamper the profitability and the ecosystem 
service provisioning of agricultural activities, par-
ticularly in the most vulnerable situations, such 
as those of farm enterprises relying on natural 
and semi-natural resources in marginal land or 
where farmers have made large investments and 
are therefore exposed to high capital risks (Dono 
et al. 2014). The latter is the case, for instance of 
intensive dairy farming, where lower animal pro-
ductions caused by an increase in the frequency 
of heatwaves are not counterbalanced by potential 
benefits in terms of irrigated forage crop yield that 
can be expected as a consequence of higher tem-
peratures in winter and/or CO2 concentration rise 
(Dono et al. 2016).

Water represents a key factor for risk, vulnera-
bility and the resilience of agriculture at farming 
system and landscape scales (Iglesias et al. 2007). 
Extreme drought and flooding are two side effects 
of the same climate pressure (Iglesias et al. 2007; 
Quintana-Seguí et al. 2016) and there is evidence 
that the Mediterranean Basin is highly vulnerable 
to reductions (up to -49%) in provisioning and 
regulating ecosystem services associated with 
agricultural water use and management (Jor-
da-Capdevila et al. 2018). Dramatic changes in the 
water balance of Mediterranean watersheds are 
ongoing, as a consequence of a combination of 
changes in rainfall regime, temperature rise and 
the increase in vegetation cover from the aban-
donment of agricultural and pastoral activities, 
particularly in northern countries (Serpa et al. 
2015; Krause et al. 2016; Zeng et al. 2018), which 
can also result into increased soil erosion (Bussi 
et al. 2014).
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These dynamics are affecting grassland-based 
systems (e.g., reduction of water pools for animal 
drinking) and large catchments based on moun-
tain water resources and hence the availability and 
stability of groundwater and reservoir stocks to be 
potentially used for irrigation (Rolo and Moreno 
2019). There is also evidence of increased vulner-
ability of water stocks potentially affecting agri-
cultural systems in southern Europe and northern 
Africa, more than in eastern countries of the Med-
iterranean Basin, caused by both ongoing climate 
and socio-economic dynamics, which in most 
cases, cannot be totally eliminated by adaptation 
strategies (Koutroulis et al. 2019).

The expected impacts of climate change on crop-
lands and grasslands are often assessed by mod-
elling under current and future climate scenarios 
(Moriondo et al. 2010; Koutroulis et al. 2019), some-
times integrated with economic (Dono et al. 2016) 
and policy change analyses (Cortignani and Dono 
2018). Unfortunately, only a few studies consider 
the combined effects of the other drivers of ongoing 
changes such as those related to technology devel-
opment, consumer behavior, energy production etc. 
(Alexander et al. 2015; Doblas-Miranda et al. 2017). 
Differences in geographic, political and environmen-
tal context characterize agriculture and pastureland 
ecosystems of each sub-region of the Mediterrane-
an Basin, resulting in diverse spatial distribution of 
vulnerabilities and risks (Prosperi et al. 2014).

In southern European countries the impacts of 
climate pressures (e.g., increased drought) are 
coupled with the ongoing transformation agroeco-
systems (e.g., abandonment in marginal lands and 
intensification of coastland agriculture). Forest 
wildfires, landslides and depopulation of marginal 
rural areas cause additional change (Nainggolan 
et al. 2012), just as water and air pollution in inten-
sively cultivated areas. Overall, production (food or 
forage) is given priority over regulating or cultural 
services (Aguilera et al. 2013; Maes et al. 2018), 
except for the urbanization of agricultural fertile 
soils (Ceccarelli et al. 2014).

In the Middle East and northern African countries, 
multiple stressors include climate, groundwater 
overexploitation, seawater intrusion in coastal 
areas, water pollution, land degradation and de-
sertification (Sowers et al. 2011; Schilling et al. 
2012; Fouchy et al. 2019), impacting social and 
political stability (de Châtel 2014). Future trends in 
agricultural and pastoral land use are very much 
context-sensitive, as predictions of future dynam-
ics are the consequence of multiple drivers beyond 
climate, which are much more uncertain in north-

ern Africa than for southern European countries 
(Prestele et al. 2016).

Focusing on an agricultural and pastoral district 
(some 54,000 ha) characterized by a mosaic of 
many different crops and land uses in southern 
Europe, located in the mid-west Mediterrane-
an Basin, Dono et al. (2016) have shown that the 
same climate and socio-economic pressures can 
generate a mosaic of different impacts on diverse 
farming systems even within the same production 
system. Several factors, including economic farm 
size, the dependence on external inputs and the 
availability of water, contributed to a range of situa-
tions: rice and vegetable farms were the “winners”, 
as long as water is not a constraint in the near fu-
ture, while “losers” were livestock farmers whose 
feeding system was based on rain-fed grasslands 
suffering from the increased frequency of extreme 
drought, hampering hay stock production (e.g, 
dairy sheep and beef cattle), or those heavily de-
pendent on external inputs, such as the dairy cattle 
system. Net impacts were associated mainly with 
the increased frequency of heat waves with a high 
temperature-humidity index (Bernabucci et al. 
2014).

Cropping systems

The potential higher resilience of irrigated cropping 
systems to increased drought must be managed in 
the context of +4 to +18% increased crop water re-
quirements due to climate forcing under different 
scenarios, involving water resource availability in 
quantity and quality and water use efficiency, par-
ticularly in southern and eastern Mediterranean 
countries (Fader et al. 2016; Malek and Verburg 
2018). At present, the Mediterranean region could 
save some 35% of irrigation water by implement-
ing more efficient irrigation and water manage-
ment systems, but southern and eastern sub-re-
gions would need around 35% more water than 
today in the future, even after the implementation 
of some degree of modernization of irrigation and 
conveyance systems, taking into account increased 
CO2 fertilization effects (Fader et al. 2016) and the 
need for supplemental irrigation for winter cereals 
(Saadi et al. 2015). Mediterranean irrigated crop-
lands include a wide range of vegetable crops, in-
cluding potato, orchards and grapes, forage crops 
and, in southern countries, sugar cane and cotton. 
Most C3 irrigated crops (e.g., many vegetables and 
rice) would benefit from increased CO2 fertilization 
effects and some C4 from the increased tempera-
ture (e.g., sugar cane and maize) but others might 
be negatively affected (e.g., olives) (Makowski et al. 
2020).
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Studies on climate change impact on vegetable 
production are scarce. Bisbis et al. (2018) have 
shown that climate change may threaten vegetable 
crop yield and quality in response to rising CO2 and 
O3 concentrations as well as extreme events. Heat 
stress reduces fruit set of fruiting vegetables and 
accelerates the development of some crops, thus 
reducing assimilation, resulting in lower quality 
and higher product waste. Vernalization of some 
crops such as cauliflower can also be threatened 
by cool season temperature increase. Fruit crops 
such as apples may suffer significant delays to 
flowering dates due to temperature rise and the 
difficult achievement of chill requirement fulfill-
ment in milder Mediterranean climates, which 
might threaten the cultivation of sensitive varieties 
in currently vacated areas (Funes et al. 2016). Most 
of these impact assessments are made without 
considering the threats related to increased in-
cidence of pest, diseases and weeds (Bindi and 
Olesen 2011; Pautasso et al. 2012; Hulme 2017) 
and those related to extreme events such as flood-
ing (Erol and Randhir 2012).

In the Mediterranean area, rain-fed croplands 
include mainly winter cereals, forage crops and 
other autumn-spring herbaceous crops, and 
perennials such as grapes and olives. Schils et 
al. (2018) showed that water-limited cereal yield 
gaps are still relevant, particularly in eastern Eu-
ropean countries, as they are substantially higher 
than for irrigated crops. Unlocking the potential 
for production growth requires a substantial in-
crease of crop N uptake and/or N use efficiency. 
Filling these gaps requires ecological or sustain-
able intensification of agricultural systems, and 
has many implications on innovation of cropping 
systems, their ecosystem services and impacts on 
GHG emissions and soil functions (Cassman 1999; 
Serpa et al. 2015; Hamidov et al. 2018; Serraj and 
Pingali 2019). Currently, the climate resilience of 
European wheat crops is declining because of the 
decline in the response diversity that is emerging 
both from farmers’ fields and plot experiments 
also in southern European countries (Kahiluoto 
et al. 2019). This suggests that current breeding 
programs and cultivar selection practices do not 
sufficiently prepare for climate uncertainty and 
variability and calls for more coordinated assess-
ment and communication of response diversity 
among plant breeders,the recovery of old varieties 
that had been abandoned by seed producers to 
be considered and the need for domestication to 
broaden the germplasm pool (Langridge 2019).

Climate change will impact olive crop evapo-
transpiration (+8%) and irrigation requirements 

(+18.5%) and crop phenology, up to reducing the 
possibility of rain-fed cultivation (Tanasijevic et al. 
2014). Furthermore, climate change will also im-
pact the interaction of olive and the obligate olive 
fruit fly (Bactrocera oleae) and alter the economics 
of olive crop across the basin. Climate warming 
will affect olive yield and fly infestation levels re-
sulting in economic winners and losers at the local 
and regional scales, that overall result in threat-
ened biodiversity and soil conservation (Ponti et al. 
2014a).

Wine grape production provides a good test case 
for measuring indirect impacts mediated by chang-
es in agriculture, because viticulture is sensitive 
to climate and is concentrated in Mediterranean 
climate regions. At the global scale, the impacts 
of climate change on viticulture are expected to 
be substantial, leading to possible conservation 
conflicts in land use and freshwater ecosystems. 
The area suitable for viticulture is expected to 
drop up to 73% in major wine producing regions by 
2050 in the worst scenario (RCP8.5), which could 
be partially compensated by upland or northward 
cultivation, or by irrigated crops, possibly resulting 
in land or water degradation (Hannah et al. 2013). 
The projected increasing temperatures will result 
in a general acceleration and shortening of the 
phenological stages compared to the present pe-
riod. Accordingly, the reduction in time for biomass 
accumulation negatively affects the final yield. In 
the cooler subregions of the Mediterranean Basin 
such as southern France and western Balkans, 
climate conditions are not limiting and the crop 
benefited from enhanced atmospheric concentra-
tion of carbon dioxide (Schils et al. 2018). Impacts 
are also expected on grape composition and hence 
wine quality, in particular with respect to aroma 
compounds. Furthermore, the frequency of ex-
treme climate events such as hail and flooding is 
likely to increase vulnerability and risks in some 
areas (van Leeuwen and Darriet 2016).

In the warmer areas, increasing temperature 
can have detrimental impacts on grape yield due 
to increased asynchrony between the larvae-re-
sistant growth stages of the grapevine and the 
larvae of the grapevine moth. On the other hand, 
the increase in pest pressure due to the increased 
number of generations might not be as severe as 
expected, because of the advance in harvest dates 
limiting damages from late-season generations. 
Furthermore, powdery mildew is expected to de-
crease in disease severity, especially in years with 
a later onset of the disease symptoms and under 
the most extreme warming scenarios (Caffarra et 
al. 2012).
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Grasslands and grazing systems

Mediterranean pastoral systems in drylands are 
expected to be severely impacted from climate 
change, mainly because of altered rainfall regime 
and grassland ecosystem water balance. Pastoral 
mobility, where possible, can mitigate the effects in 
terms of livelihood but not necessarily in economic 
terms (Martin et al. 2014). These impacts are ex-
pected to be site-specific as they are related main-
ly to the change in precipitation variability, which 
appears as the main determinant of degradation 
in terms of losses in fodder and livestock produc-
tion in drylands. Perennial forage plants adapted 
to Mediterranean conditions are a fundamental 
resource (Lelièvre et al. 2011), providing that suf-
ficient rest is allowed between two subsequent 
grazing periods. However, projected change is 
expected to outrange the adaptive capacity of pas-
toralists. Similar conclusions about the depend-
ence of climate change effects on land use and 
subregions in grassland systems were achieved by 
Bütof et al. (2012), who showed how single plant 
species respond in many different ways to climate 
pressures because of the complex interactions of 
climate change with land use practices. More as-
sessments are expected from the use of grassland 
modelling well-calibrated to Mediterranean-type 
ecosystems (Pulina et al. 2017; Langridge 2019).

Wooded pastures such as dehesa-type habitats, 
are a typical high nature value (Bernués et al. 2016) 
agro-silvopastoral vegetation of many Mediterra-
nean countries, particularly in the western basin 
(Bagella et al. 2013; Torralba et al. 2016; Seddaiu 
et al. 2018). These types of ecosystems are al-
ready threatened by current management systems 
under present climate conditions (Rossetti et al. 
2015) and by increased drought risks in relation 
to stocking rates and grazing management, lead-
ing to potential higher economic losses with high 
stocking rates (Iglesias et al. 2016). Tree survival in 
such ecosystems depends on deep water reserves 
throughout late spring and summer, which helps 
to avoid competition for water with herbaceous 
vegetation (Cubera and Moreno 2007).

Few studies have explored how climate change and 
grazing interactively affect the biodiversity, primary 
productivity and ecosystem stability of grassland 
ecosystems. A recent meta-analysis indicates that 
the effects of climate change on biodiversity and 
ecosystem functioning were largely dependent on 
grazing history within same climate conditions. 
However, more field studies are needed to test how 
different climate scenarios affect the biodiversity, 
functioning, structure and stability of grassland 

ecosystems, to address sustainable grassland 
management in different environmental and cli-
mate contexts (Kairis et al. 2015; Li et al. 2018).

Vulnerability and risks are mainly associated with 
the increased frequency of heat stress in summer, 
leading to heavy impacts on animal health and 
welfare, i.e., increased incidence of diseases and 
mortality or lower fertility (Lacetera 2019). Indirect 
effects of climate pressures increase vulnerability 
and risks associated with new vector-born infec-
tions such as bluetongue (driven by Culicoides imi-
cola), or other direct parasites, whose spread can 
be facilitated by a milder winter climate in northern 
Mediterranean countries (Bosco et al. 2015). Other 
indirect effects can be related to the increased  
incidence of mycotoxins in fodders due to a higher in-
cidence of pests and diseases in forage crops favored 
by increased temperature (Bernabucci et al. 2011).

4.3.2.5 Freshwater ecosystems

Rivers and streams

In most of the Mediterranean region average river 
discharge is predicted to decrease while both water 
temperature and the frequency of large floods are 
likely to increase (Calbó 2010). The projected de-
crease in rainfall and increase in temperatures will 
result in a 10 to 30% decrease in river discharge by 
the end of the 21st century and a significant reduc-
tion in the availability of freshwater (Allen and In-
gram 2002; Milly et al. 2005; Lelieveld et al. 2012).

In the eastern Mediterranean, many authors have 
detected negative trends in runoff. This was the 
case for rivers located in Greece (Giakoumakis 
and Baloutsos 1997) and the Balkans (Genev 2003; 
Rivas and Koleva-Lizama 2005; Frantar and Hrvatin 
2006), Lebanon (Shaban 2009) and Turkey (Kahya 
and Kalayci 2004). In the western basin, the Duero 
Basin in the Iberian Peninsula is the most obvi-
ous example. Since 1960, Duero River discharges 
have decreased by 20 to 50% (Ceballos-Barbancho 
et al. 2008; Morán-Tejeda et al. 2010). Most Med-
iterranean catchment headwaters are in moun-
tainous areas and are snow-fed. In various regions 
across the Mediterranean, snow-fed high moun-
tainous springs are the only source of runoff dur-
ing the long dry summer of the Mediterranean cli-
mate. Hence, an increase in temperatures cause 
less snow accumulation and an irregular and 
rapid snowmelt, which will result in turn in higher  
winter and lower spring discharges and decreas-
ing summer low flows. These impacts are ob-
served in various part of the Mediterranean such 
as the Pyrenees (López-Moreno and García-Ruiz 
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2004; López-Moreno 2005) and in Lebanon (Shaban 
2009).

Overall, projections suggest decreased hydro-
logical connectivity, increased concentration of 
pollutants during droughts, changes in biological 
communities as a result of harsher environmental 
conditions, and a decrease in biological processes 
like nutrient uptake, primary production, or de-
composition. Furthermore, the increased pressure 
on shrinking water resources will compound the 
impacts on river ecosystems (Navarro-Ortega et 
al. 2015).

Wetlands

Mediterranean wetland water depths and hy-
droperiods (meaning the water inundation peri-
od) along with the increase in their salinity levels 
and isolation and fragmentation are affected by 
multiple human activities (e.g., water extraction) 
(Ramírez et al. 2018). These activities are altering 
the water budgets of wetlands and reducing their 
ecosystem services. Reed beds in the region have 
expanded by 89.3% and are the predominant aquat-
ic plant of the all wetlands in the region, which is 
a major change. In contrast, open water areas and 
wet meadows have decreased by 53.7 and 96.5% 
respectively (Papastergiadou et al. 2007). The loss 
of these key wetland features (e.g., open waters 
and wet meadows) are impacting the structure of 
waterbird communities. The future conditions of 
climate change scenarios will further reduce the 
environmental suitability of Mediterranean wet-
lands for the guilds of diving birds and vegetation 
gleaners (Ramírez et al. 2018).

Freshwater biodiversity

The high intensity and large-scale water man-
agement alterations on rivers and streams of the 
region have had a particularly strong impact on 
these ecosystems, possibly the highest in the world 
(Grantham et al. 2013). A similar trend in fish bio-
diversity loss, also associated with water manage-
ment pressures, has been reported for rivers in the 
Iberian Peninsula (Aparicio et al. 2000; Benejam et 
al. 2008; Clavero et al. 2010). The establishment of 
alien species in these ecosystems, which can alter 
natural processes and adversely affect native biota, 
has also been associated with numerous anthropo-
genic hydrologic infrastructure in the region (Elvira 
and Almodovar 2001; Clavero et al. 2004; Light and 
Marchetti 2007; Grantham et al. 2013).

The Mediterranean-climate freshwater ecosys-
tems host fauna that have evolved and are adapt-

ed to the stresses of its streams and rivers. With 
climate change predicting longer or more extreme 
drying events (Lawrence et al. 2010; Filipe et al. 
2013), their populations and communities will be 
highly stressed during dry years, thus reducing the 
resilience capacity of Mediterranean rivers and 
streams and compromising the survival of their 
biota (Magalhães et al. 2007). Under this situation, 
these new conditions will lead to irreversible, and 
undesirable, “regime shifts” in Mediterranean riv-
ers (Cid et al. 2017).

Due to climate induced changes, stream biota tend 
to move towards higher elevations and upper lati-
tudes, while the communities change and homog-
enize their composition (Filipe et al. 2013). Some 
life-history traits provide biota with resilience and 
resistance to adapt to the new conditions although 
it appears that in many cases, current and future 
environmental changes are exceeding the biota 
survival boundaries. The difficulty of distinguishing 
disturbances due to natural hydrologic variability 
from the effects of climate change in the region 
make adaptation forecasts even more challenging. 
Long-term studies are needed to improve knowl-
edge regarding stream biota ecological responses 
due to climate change (Filipe et al. 2013).

The reduction of subsurface inflow to streams and 
the changes in groundwater dynamics that have 
degraded of their biological quality have already 
made these ecosystems highly vulnerable (Bene-
jam et al. 2008). In addition, wastewater inflow 
(whether treated or not) into streams will further 
exacerbate the pressures on fluvial ecosystems, 
even though initially the induced drought impacts 
can be partially offset by these industrial discharg-
es. The hydrological benefits of these discharges 
are compromised by declines in water quality and 
habitat quality. Moreover, the capacity of aquatic 
ecosystems to cope with droughts has been lost or 
significantly reduced in many regions (Andersen et 
al. 2004; Bond et al. 2008; Rault et al. 2019).

4.3.3 Adaptation

Communities continue to be significantly depend-
ent on ecosystem services for their livelihoods and 
therefore the preservation of the livelihood and 
culture of communities together with its biodi-
versity, in these areas is considered as important 
to promoting sustainable development and adap-
tation to climate stresses within the region. The 
integration of humans, and human actions within 
the landscapes and seascapes of the Mediterra-
nean region also embraces the IUCN Category 
IV - Protected Landscapes (Dudley 2008), which 
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provides the flexibility to offer protection to entire 
landscapes, as shaped through the interaction  
of human actions and nature, as well as spe-
cific protection for specially defined purposes 
(e.g., habitats/species). Appropriate (integrated) 
landscape management can be used to promote  
heterogeneity compensating for the loss of habitat 
diversity:

•  the protection of traditional food systems, con-
servation of species and functional agricultural 
biodiversity, and improvement in cropping and ir-
rigation systems to adapt to a changing climate,

•  sustainable urban development that promotes 
the uptake of nature-based solutions that are 
suitable for a Mediterranean climate in urban 
areas to provide benefits to biodiversity, contrib-
ute to ecosystem services and increase resil-
ience to climate change (Box 4.2), 

•  semi-natural ecosystems: adaptive management 
includes the implementation of habitat man-
agement, restoration and afforestation actions 
to provide benefits to biodiversity and human 
well-being, whilst using species adapted to ex-
pected future conditions,

•  managing changing disturbance regimes: pre-
ventive (e.g., pest monitoring) and remedial (e.g., 
sanitation felling, pest control).

This section provides an overview of the oppor-
tunities for adaptation of ecosystems, through 
incremental (capacity-building) actions and im-
pact-based actions, whilst considering the lim-
itations to the adaptability of Mediterranean so-
cial-ecological systems and the impacts of these 
actions on biodiversity and the ecosystem services 
and benefits to human well-being. In this analysis, 
the role of human influences and inputs on eco-
system structure and functions is critical to pro-
moting (or limiting) adaptation of Mediterranean 
social-ecological systems.

4.3.3.1 Forests

Mediterranean forests will need to adapt to a 
warmer and drier climate, which entails extend-
ed drought periods, long heat waves, increasing 
fire risk and exposure to increased intensity and 
frequency of biotic disturbances (e.g., pests). Med-
iterranean forests, as any other type of ecosystem, 
have an inherent adaptive capacity as a result of 
the co-evolution of plants with environmental con-
ditions that have always changed (Valladares et 
al. 2014a). However, the speed of current environ-
mental change is unprecedented and poses doubts 
concerning the ability of Mediterranean species to 
cope with the change to come, and in some cases 

might make it advisable to adopt planned adaptive 
measures.

Biological adaptation

The inherent adaptive capacity of forests includes 
in situ adjustments to new environmental condi-
tions via phenotypic plasticity or natural selection, 
and migration to more suitable habitats (Mate-
sanz and Valladares 2014). Climate envelopes are 
shifting polewards and upwards, and the easiest 
response to climate change may be a geographic 
shift in distribution into climatically suitable areas 
(Christmas et al. 2016). There is already evidence of 
some species responding to increasingly warmer 
and arid conditions through altitudinal or latitudi-
nal migration. For example, Peñuelas et al. (2007) 
and Peñuelas and Boada (2003) showed a grad-
ual upward shift of the temperate Fagus sylvatica 
species in northeastern Spain and their gradual 
replacement by the xeric Quercus ilex in the mid- 
and low- altitudes. Similarly, Sanz-Elorza et al. 
(2003) reported an encroachment of sub-alpine 
grasslands by Mediterranean woody species char-
acteristic of lower altitudes during the second half 
of the 20th century in mountain systems of central 
Spain. Upward migration of forest species has also 
been reported in the Italian Apennines (Palombo 
et al. 2013), the Spanish Pyrenees (Améztegui et 
al. 2010, 2016) or southeastern France (Bodin et al. 
2013). However, although these movements coin-
cide with an increase in temperatures, changes in 
land use (agricultural abandonment and reduction 
of anthropic pressure on forests) seem to play a 
preponderant role in forest expansion (Améztegui 
et al. 2010). Most of the species altitudinal dis-
placements have occurred via the colonization of 
open areas after their abandonment. Replacement 
of a given tree species by their low-altitude neigh-
bors is only possible when there is a retraction in 
its trailing-edge distribution, such as in the case of 
the Montseny mountains studied by Peñuelas and 
Boada (2003). However, altitudinal range retrac-
tions have received much less attention than lead-
edge expansions, particularly in Mediterranean 
mountains, although they seem to be occurring 
in many mountain areas worldwide (Jump et al. 
2009).

Phenological observations since the 1950s show a 
fairly consistent response of Mediterranean vege-
tation to rising temperatures. Between 80 and 96% 
of the species studied advanced their leaf unfold-
ing, delayed the leaf fall, or both, which resulted 
in an average extension of 30 days in the growing 
season between 1952 and 2000 (Peñuelas et al. 
2002). The lengthening of the growing season could 
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trigger increases in growth but can also cause 
higher frost damage risk and increased water 
transpiration. There is less consensus about the 
physiological plasticity of Mediterranean forest 
species to environmental stressors. The current 
available information reveals the potential for 
some Mediterranean plant species for significant 
plasticity and rapid evolutionary change, and epi-
genetic responses have also been documented 
(Madlung and Comai 2004). However, this infor-
mation is fragmentary and suggests large differ-
ences among species, with some of them being 
quite vulnerable to fast rates of environmental 
change (Matesanz and Valladares 2014). Some 
studies reveal contrasting functional responses 
to disturbances among tree species and forest 
biomes. For instance, evergreen gymnosperms 
growing in drought-prone areas showed lower re-
sistance but faster recovery after drought events 
than plants dominating in temperate or wet re-
gions, which suggests different physiological 
strategies to cope with drought (Gazol et al. 2018). 
This may be of great importance in a changing 
future, as the response of vegetation may be dif-
ferent as droughts become more intense, more 
frequent, or both. Tree species with wide a distri-
bution range also seem to display contrasting re-
sponses across their entire range (Benito-Garzón 
et al. 2011) that have been related to intraspecific 
plasticity and genetic differentiation among tree 
populations as a result of differences in the inten-
sity of the environmental stresses (Benito-Garzón 
et al. 2013). In a drier environment, interactions 
between species may also be altered. According 
to the stress gradient hypothesis (Maestre et 
al. 2009), facilitative effects may become more 
frequent. In fact, the role of shrubs as nurse 
vegetation for pine seedlings has already been 
documented in semi-arid and arid Mediterranean 
regions (Castro et al. 2004; Gómez-Aparicio et al. 
2008), and this role could become even more im-
portant in the future.

The degree to which physiological responses lead 
to vegetation shifts (i.e., changes in the compo-
sition of the vegetation) is fundamentally unre-
solved. When two or more species coexist and 
are differently affected by directional changes in 
climate and/or by disturbance events, demograph-
ic responses become fundamental to project the 
fate of woody plant communities (Martínez-Vilalta 
and Lloret 2016). Mortality and regeneration 
thus become the key processes, since a vege-
tation shift will only occur if the initially affected 
species is not able to regenerate and dominate 
again (Martínez-Vilalta and Lloret 2016). In a drier 
environment, interactions between species may 

also be altered. According to the stress gradient 
hypothesis (Maestre et al. 2009), facilitative effects 
may become more frequent. In fact, the role of 
shrubs as nurse vegetation for pine seedlings has 
already been documented in semi-arid and arid 
Mediterranean regions (Castro et al. 2004; Gómez-
Aparicio et al. 2008), and this role could become 
even more important in the future.

Limits to adaptation

Forests are particularly sensitive to climate change, 
because the long life-span of trees does not allow 
for rapid adaptation to environmental changes 
(Lindner et al. 2010). Moreover, the Mediterranean 
region is likely to experience more adverse effects 
of climate change when compared to Europe, 
while being the least prepared to cope with such 
drastic changes (Lindner et al. 2010; Lindner and 
Calama 2013). On the one hand, the strong human 
impact on Mediterranean forests has led to high 
levels of fragmentation, which alter population 
genetics and species ecology, and affect the ability 
of populations to respond to environmental chang-
es. Furthermore, adaptive capacity is usually the 
lowest at the rear edge of species ranges, where 
plants are growing close to their physiological 
limits, as is the case for many species dwelling in 
Mediterranean forests. These forests cannot bene-
fit from gene flow from better adapted populations, 
so only short-term adaptation and plasticity are 
available to cope with the extinction risk (Lindner 
and Calama 2013).

Fragmented populations suffer from greater ge-
netic drift, homozygosity and inbreeding within 
populations, and are less likely to benefit from the 
positive effects of gene flow (Valladares et al. 2014b; 
Christmas et al. 2016). Both the adaptive capacity 
to new environmental conditions and the ability to 
migrate are hampered by fragmentation. Shifts in 
species or population ranges to track optimal cli-
mate conditions can be limited by fragmentation, 
which acts as a barrier for the colonization of many 
species. Indeed, migrations are not as common as 
could be expected (Harsch et al. 2009; Zhu et al. 
2012), potentially putting populations at higher risk 
of becoming increasingly maladapted over time 
(Christmas et al. 2016), particularly at the rear end 
of species distributions, where populations are 
deprived of gene flow from better adapted popu-
lations (Lindner et al. 2010). Under the projected 
rates of future climate change, migration will rely 
on the evolution of very long dispersal distances in 
order to enable species to reach suitable new hab-
itats. Moreover, global warming will also lead to 
a decoupling of species interactions (pollinators, 
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predator-prey, etc.) that can further complicate the 
migration of several forest species.

If species fail to migrate, then in situ adaptation 
will be the only strategy for persistence (Christmas 
et al. 2016). In this regard, fragmented populations 
also show lower capacity of adapting and respond-
ing to changing conditions. Forests with a greater 
diversity of response traits (i.e., traits that confer 
the organisms the ability to cope with disturbanc-
es), are indeed more resistant and resilient to 
disturbances, increasing the likelihood that such 
communities may persist under future conditions 
(Sánchez-Pinillos et al. 2016). Moreover, the ef-
fects of fragmentation on the genetic diversity of 
organisms can last for centuries, and some popu-
lations still hold legacies from the effects of human 
actions centuries ago, as is the case of Fagus syl-
vatica in northeastern Spain (Jump and Peñuelas 
2005). In the absence of migration or evolutionary 
adaptation, the ability of populations to persist in 
the new environment will depend exclusively on 
their phenotypic plasticity, i.e., their ability to alter 
their phenotype with environmental conditions. 
Although Mediterranean forests have shown rela-
tively high levels of plasticity, being plastic has an 
important metabolic cost, and there are universal 
physicochemical constraints that prevent the abil-
ity of a species to simultaneously tolerate several 
stresses (Laanisto and Niinemets 2015). In this 
sense, the succession of disturbances can cause 
an important limitation to the adaptation of the 
species. For example, the regeneration of Pinus 
nigra after wildfires depends both on the existence 
of nearby unburned vegetation patches and on 
climate conditions in the years following the fire 
(Martín-Alcón and Coll 2016; Sánchez-Pinillos et 
al. 2018). Distinct sequences of disturbance events 
can cause vegetation transitions, with non-lin-
ear responses and tipping points, even if the re-
currence of individual disturbances is moderate 
(Batllori et al. 2019). Therefore, the succession of 
fires and droughts could trigger massive failures in 
regeneration, leading to a change in the ecosystem 
towards a greater dominance of oaks. In the driest 
areas, the combined effects of several disturbanc-
es is likely to exceed the response capacity of or-
ganisms, leading to the extinction of some species 
and even triggering shifts in ecosystem state (from 
forest to non-forest) (Batllori et al. 2019), which 
entails a high risk of soil erosion, degradation, and 
desertification.

Measures to promote adaptation

Whenever the inherent adaptive capacity of spe-
cies is not sufficient, or too slow, planned adap-

tation measures can be implemented to decrease 
the known risks, increase forest resistance, or 
promote its recovery capacity (Lindner and Calama 
2013). Adaptation measures in the Mediterranean 
commonly seek to address the two main distur-
bances in the region: drought and fire, and can  
be classified into five categories (Vilà-Cabrera et 
al. 2018).

Reducing tree density through thinning has the 
triple effect of increasing the growth and value 
of the remaining trees while also improving their 
water status and reducing fire risks. In a climate 
change context, thinning can diminish interception 
losses and reduce stand transpiration, increasing 
the amount of available water, which is apportioned 
among fewer trees (Sohn et al. 2016b). Some stud-
ies report a direct reduction of drought-induced 
mortality of Scots pine for high thinning intensities 
(Giuggiola et al. 2013), and an increase in the re-
sistance and recovery of growth following drought 
events (Martín-Benito et al. 2010; Sohn et al. 2013, 
2016a), which may be particularly important in dry 
areas or under sever climate change scenarios 
(Ameztegui et al. 2017; del Río et al. 2017). However, 
there is also evidence to suggest that, under ex-
tremely dry conditions, tree mortality risk may be 
density-independent, as all the available soil mois-
ture can be lost to evapotranspiration before it can 
be harnessed by trees (Dorman et al. 2015).

The reduction of the understory cover has main-
ly been applied with the aim of reducing the risk 
of fire propagation by breaking the vertical and 
horizontal fuel continuity. Reduction of understory 
cover can be achieved either through mechanical 
treatments, prescribed burning or by promoting 
understory grazing in forest areas (Vilà-Cabrera et 
al. 2018).

The promotion of mixed-species stands (at the 
species or genotype levels) can increase resist-
ance and recovery capacity to extreme droughts 
(Pretzsch et al. 2013), higher temporal stability 
(Jucker et al. 2014; Sánchez-Pinillos et al. 2016; 
del Río et al. 2017), and reduce the risk of biotic 
and abiotic disturbances (Guyot et al. 2016; Jactel 
et al. 2017) and the maintenance of ecosystem ser-
vice provision (Gamfeldt et al. 2013).

The change in species or genetic composition 
seeks to replace the maladapted species or pop-
ulations with species or genotypes better adapt-
ed to the forecasted climate conditions, and can 
include (i) assisted population migration (i.e., the 
active relocation of well-adapted populations of a 
given species within its current range); (ii) assist-

CHAPTER 4 - ECOSYSTEMS



406 CLIMATE AND ENVIRONMENTAL CHANGE IN THE MEDITERRANEAN BASIN  |  MedECC

ed range expansion (relocation of a species to an 
area adjacent to its current range); and (iii) assist-
ed species migration (i.e., the displacement of a 
species beyond its current range, where the future 
climate is expected to be suitable for its develop-
ment) (Williams and Dumroese 2013). Although 
the effectiveness of these practices seems appar-
ent, there are still many doubts about their risks 
and consequences on the host environment, espe-
cially in the latter sense. At present, there is no 
consensus on their suitability, and they generate 
significant rejection both by a large part of the sci-
entific community and by the general population 
(Lawler and Olden 2011), and in the Mediterranean 
they have not yet been applied beyond small-scale 
scientific experiments (Martín-Alcón et al. 2016).

The promotion of the spatial heterogeneity of the 
landscape matrix has mostly been advocated as 
a way to reduce the impacts of fire by slowing or 
preventing its expansion and allowing for greater 
effectiveness in firefighting (e.g., minimizing total 
burnt area) (Loepfe et al. 2012; Regos et al. 2016). 
A heterogeneous landscape also allows for the co-
existence of different habitats (forests, open areas, 
etc.) each with different goals and providing differ-
ent services. Moreover, greater heterogeneity can 
also contribute to enhancing gene flow and natural 
species migration, provided that enough corridors 
are available (Saura et al. 2018; Vilà-Cabrera et al. 
2018). Fire risk management can also be achieved 
through the promotion of particular land covers/
uses that reduce the risk of intense crown fires 
(e.g., fagaceae vs. conifers: Moriondo et al. 2006).

However, the socio-economic adaptive capacity of 
the Mediterranean forest sector also has to face 
several constraints derived from the low economic 
incomes of many Mediterranean forests, mainly 
due to low fertility and water limitation, the lack 
of a developed road network and the limited im-
plementation of technological advances (e.g., 
harvesting machinery), which results in a large 
part of Mediterranean forests not being managed 
at all (Lindner et al. 2010; Lindner and Calama 
2013), limiting the capacity of forests to adapt to 
climate change. Moreover, managing forests to 
increase adaptive capacity can lead to trade-offs 
with other ecosystem functions and with biodiver-
sity (Vilà-Cabrera et al. 2018).

4.3.3.2 Mountain ecosystems

Implementation of effective adaptation measures 
depends on the availability of human resources 
and expertise. However, the knowledge base about 
Mediterranean mountains varies significantly.

Enhancing connectivity is a key measure to fa-
cilitate expected range shifts (Keeley et al. 2018) 
which in mountain areas may be achieved by 
“building” linear and latitudinal corridors and tak-
ing advantage of the river network. In addition, due 
to interconnected risks, wider spatial frameworks 
are necessary, for instance at the watershed level, 
since upstream changes influence downstream. 
There are still pristine areas in many Mediterra-
nean mountains that sustain a diversity of plant 
and animal species. However, this role is impeded 
by ongoing human activities and most importantly, 
climate change has pointed to the need to design a 
flexible reserve system along with conventional ex 
situ conservation measures. Such as reserve sys-
tem may place emphasis on the permeability of the 
intervening landscape matrix, dispersal corridors 
and habitat networks (Jongman and Pungetti 2004; 
Watts and Handley 2010). Mountains have played 
a refuge role in geological history and to a certain 
extent they retain this role today, with many of 
their endemic species surviving in places located 
in such refugia (Vogiatzakis and Griffiths 2008; Vo-
giatzakis 2012). This is at the core of climate-wise 
connectivity as proposed by recent studies (Keeley 
et al. 2018). Mountain ecosystems may prove more 
resilient since upward migration of lower zone 
species will be conditioned by topography and ge-
omorphology i.e., habitat suitability (Kazakis et al. 
2007). 

4.3.3.3 Drylands and shrublands

Plants exhibit a variety of mechanisms to avoid 
(e.g., annual life-cycle) or to tolerate drought (e.g., 
perennial shrubs), and to deal with disturbance 
pressures, such as fire and herbivory (Noy-Meir 
1973; Davies et al. 2012). Dryland biodiversity inter-
acts with abiotic factors to determine ecosystem 
functioning (e.g., productivity, nutrient fluxes) and 
resilience (i.e., the ability to return to a previous 
state after disturbance), both of which are critical 
to ensuring the provision of ecosystem services 
(MEA 2005). Climate change predictions point to 
an overall increase in aridity and in the variability 
of precipitation distribution in drylands (Dai 2013). 
Climate change is therefore expected to further 
reduce productivity over time.

Topography creates contrasting microclimates, 
especially between northern and southern slopes 
in drylands, which result in clear differences in tree 
cover patterns in the landscape. These local-scale 
differences in tree cover patterns may result from 
limitations occurring at different plant develop-
ment stages, such as seed germination, seedling 
establishment, tree growth rate and survival, 
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all crucial for the maintenance and expansion of 
plant populations through natural regeneration. 
Leaf physiological performance was similar under 
contrasting microclimatic conditions. However, in 
areas with higher Potential Solar Radiation, tree 
age and density were significantly reduced. These 
results suggest that microclimatic differences 
on southern slopes with high Potential Solar Ra-
diation are limiting for germination and sapling 
establishment. Thus, forest regeneration, restora-
tion and nature conservation practices aiming at 
increasing forest resilience in Mediterranean dry-
land climates should account for the importance of 
microclimate in defining the niche of seedlings and 
adult trees (Príncipe et al. 2019).

Shrub encroachment was largely predicted by 
topo-edaphic factors in Mediterranean dryland 
ecosystems subject to conventional low-intensi-
ty land use composed of savanna-like holm oak 
woodlands, along with a regional climate gradient 
(Nunes et al. 2019). Management strategies to re-
duce encroachment therefore need to take these 
drivers into account for efficient forecasting and 
higher cost-effectiveness. Climate had a strong-
er effect on a set of functional traits involved to a 
limited extent in shrub encroachment, related to 
flowering and dispersal strategies. These results 
suggest that climate change might not greatly 
impact shrub encroachment in the Mediterranean 
Basin, but may affect the functional structure and 
reduce the functional diversity of plant communi-
ties, thus affecting ecosystem functioning (Nunes 
et al. 2019).

Drylands are very susceptible to the effects of 
climate change due to water stress. One possible 
climate change adaptation measure is the con-
struction of lakes to increase water availability 
for drinking and irrigation (food production) and 
decrease fire risk. These lakes can also increase 
local biodiversity and human well-being. However, 
other non-target services such as carbon (C) stor-
age, water purification, and sediment retention 
might also change.

An evaluation of the trade-offs on non-targeted 
ecosystem services due to lake construction in 
drylands was carried out by Santos et al. (2018). 
This was done using the Integrated Valuation of 
Ecosystem Services and Tradeoffs (InVEST) mod-
elling tools, comparing a Mediterranean area 
located in southwestern Europe, with and without 
artificial lakes. Results showed that the construc-
tion of artificial lakes caused an increase of 9.4% 
in carbon storage. However, the resulting increase 
in agricultural area decreased water purification 

and sediment retention services. This could dimin-
ish the lifespan of the lakes, changing the initial 
beneficial cost-benefit analysis on lakes as adap-
tation measures to climate change. As a global 
measure for mitigation and adaptation to climate 
change strategy, we consider lake construction in 
drylands to be positive since it can store carbon in 
sediments and reduces the vulnerability to water 
scarcity. However, as a general recommendation, 
and when built to support or increase agriculture 
in semi-arid landscapes, we consider that lakes 
should be supplemented with additional meas-
ures to reduce soil erosion and nutrient leaching, 
such as (i) locating agricultural areas outside the 
lake water basin, (ii) afforestation surrounding the 
lakes, and (iii) adopting the best local agriculture 
practices to prevent and control soil erosion and 
nutrient leaching.

4.3.3.4 Agriculture and pasturelands

Transformational adaptation in agriculture has 
been described as a redistribution of at least a third 
of the production factors and/or production output 
in a 25-year timeframe, which mostly involves qual-
itative changes in inputs and outputs (Vermeulen et 
al. 2013). Transformational adaptation can result 
into a radical change to the area of production, to 
the main crops or production types (e.g., shift from 
animal to crop productions, abandonment of a spe-
cific type of farming, reclaim of abandoned lands, 
shift from rain-fed to irrigated agriculture, from 
nomadic to settled grazing systems, from conven-
tional to organic farming systems). Vermeulen et 
al. (2018) also pointed out that the success factors 
and drivers of positive transformational adaptation 
include changes in governance in favor of disad-
vantaged stakeholders. They also showed that the 
capacity of producers, processors and consumers 
to adapt is highly context-sensitive and depends on 
public policy, market drivers and cultural values.

Farmers’ long-term responses and investments in 
adaptation are constrained by barriers: (i) climate 
change signals can be biased by the perceptions 
of farmers (Nguyen et al. 2016), (ii) the projections 
are uncertain, (iii) climate change communication 
is difficult and often does not result in behavioral 
change (Wise et al. 2014), (iv) timescales for farm 
planning are relatively short and other priorities 
take precedence, (v) there are expectations of 
technology being able to cope with the negative 
effects of climate change, (vi) scientific knowl-
edge and tools developed in agriculture rarely 
support long-term strategic decisions (Robertson 
and Murray-Prior 2016). Also, short-sighted state 
policies can increase the vulnerability of farmers 
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to climate change and constrain their adaptive ca-
pacities (Turhan et al. 2015).

Opening new spaces for learning and generating 
enabling contexts through translating systems 
thinking into practice are fundamental steps for 
raising awareness about adaptation actions in a 
climate change world (Ison 2010). Vermeulen et al. 
(2018) examined several case studies on transfor-
mational adaptation in agriculture and showed how 
in practice it often emerges from a disorganized 
combination of responses from multiple actors 
to external pressures where climate change can 
only be an indirect driver. However, farmers rely 
on their experience to plan their practices, which 
will become obsolete if climate change occurs too 
quickly. They design their activities on the basis of 
a perceived probability distribution of their known 
drivers and performance indicators but, under cli-
mate change, probability distributions are shifted 
in mean, variance or both and are unknown, thus 
resulting in increased frequency of unexpected 
events. Dono et al. (2016) showed how these shifts 
between actual and expected probabilities can 
result in winners and losers in an affected area, 
depending on the type of farming system under 
the same expectations of climate pressures in a 
Mediterranean context.

Adaptation in agriculture requires customized 
support to the choices of any specific farm type in 
a given environmental situation or context, which 
is a challenge both for science and policy. The vari-
ety of environmental and socio-economic contexts 
and agricultural systems across the sub-regions of 
the Mediterranean Basin and across farming types 
within sub-regions, generate a great diversity of 
needs, adaptation strategies and have site-specif-
ic implications on biodiversity and the ecosystem 
services of agroecosystems.

Adaptation strategies and plans are being adopted 
at the continental, country or local level under the 
Cancun Adaptation Framework of the UNFCCC37. 
However, by December 2018, among the nine Med-
iterranean countries of the EU, only three (Cyprus, 
France and Spain) had already adopted a national 
adaptation plan, while eight had adopted a nation-
al strategy. Such plans should create the enabling 
environment for “last-mile” adaptation to occur, 
but moving from planning to implementation is a 
challenge because of the difficulties found in ad-
dressing capacity constraints, securing adequate 
financing and measuring the success of actions 

(Mullan et al. 2015). The following cases provide 
some examples of the specific adaptation needs of 
agriculture and pastureland systems in the Medi-
terranean context.

At present, cereal production is well below poten-
tial in southern Europe. Schils et al. (2018) demon-
strated that the yield gap between actual and 
potential production would require good agronomy 
for sustainable intensification and thus increase 
the self-sufficiency food production of the entire 
Mediterranean area (Vermeulen et al. 2013). The 
self-sufficiency ratio in northern Africa is lower 
today than it was in the past as a consequence of 
demographic expansion, and is also resulting in 
low stability, not only in low GDP countries (Luan 
et al. 2013). Under pronounced drying trends doc-
umented by recent assessments, particularly in 
northwest Africa, a strategic objective is to move 
from maximized to stabilized production (Schilling 
et al. 2012). This can also be achieved through 
improved climate-proof agronomic practices such 
as the incorporation of crop residues combined 
with supplementary irrigation, where available 
(Benlhabib et al. 2014; Jacobsen 2014).

Adapting dryland agriculture to climate change 
in the Mediterranean requires substantial invest-
ments in plant breeding for heat and water stress 
tolerance and to increase yield and quality under 
conditions of high CO2 concentration (Asseng and 
Pannell 2013). The same authors suggest invest-
ments in new species and cultivars of perennial 
plants. Such investments should be coupled with 
improved seasonal forecasting, which would ena-
ble farmers to make timely decisions about agro-
nomic practices, thus improving resource use and 
crop yield. However, climate resilience is currently 
not receiving the necessary attention from breed-
ers, seed and wheat traders, and farmers, while 
there are clear signals of declining resilience, 
at least for durum wheat, also in Mediterranean 
countries, including Spain (Kahiluoto et al. 2019). 
This latter assessment revealed that current 
breeding programs and cultivar selection practices 
do not sufficiently prepare for climate uncertainty 
and variability by applying a variety of responses 
to the same climate pressures by different wheat 
cultivars. In the case of barley, a pivotal crop in 
the Mediterranean area, Cammaron et al. (2019) 
demonstrated that, besides plant breeding, shift-
ing sowing dates and improving soil organic car-
bon are viable adaptation strategies to mitigate the 
expected negative impacts of a future drier and 

37 https://unfccc.int/topics/adaptation-and-resilience/workstreams/national-adaptation-plans
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warmer Mediterranean climate on barley grain 
yield.

Wheat protein yield gains are expected to be lower 
and more variable in most rain-fed low-input 
cropping regions, where nitrogen availability lim-
its growth stimulus from elevated CO2 (Asseng 
et al. 2019). This is particularly true for North 
African countries, where food demand is increas-
ing due to population increase (Schils et al. 2018). 
Introducing wheat genotypes adapted to warmer 
climate may not result in increased protein pro-
duction. Therefore climate adaptations leading to 
stabilized grain yield could not always be positive 
in terms of grain quality (Asseng et al. 2019). 
Adaptive pathways for cereal productions also 
have impacts on integrated governance aiming 
to yield stability, such as the implementation of 
national action plans and policies to regulate and 
provide incentives for increasing diversity in crop 
responses to climate uncertainties (Kahiluoto et 
al. 2019).

Legumes represent a strategic resource for sus-
tainable intensification of agricultural systems and 
climate change adaptation in the Mediterranean 
Basin. In addition to serving as a fundamental 
source of high quality food and feed, legumes con-
tribute to net nitrogen inputs in cropping systems 
at low N2O emissions and contribute to net soil 
carbon sequestration (Volpi et al. 2016; Stagnari 
et al. 2017). The environmental services provided 
by legume cultivation are still undervalued, while 
new opportunities for yield improvement are aris-
ing from the ongoing development of cost-efficient 
genome-enabled selection procedures, enhanced 
adaptation to specific cropping conditions and 
more thorough exploitation of global genetic re-
sources (Annicchiarico 2017).

The cropping systems for the production of bio-
energy and biomaterials are assumed to occupy 
part of the residual agricultural land abandoned in 
the past 50 years, but this will not be sufficient to 
meet the increased bioenergy demand associated 
with climate change energy policies in European 
countries (Cosentino et al. 2012). These crops may 
also find a strategic position in Mediterranean 
cropping systems to reclaim polluted arable land 
from industrial or mining wastelands (Fagnano 
and Fiorentino 2018).

Increased irrigation water efficiency and the design 
of climate-friendly agro-ecosystems are key adap-
tation strategies for Mediterranean agriculture, 
in particular for countries such as Algeria, Libya, 
Israel, Jordan, Lebanon, Syria, Serbia, Morocco, 

Tunisia and Spain, which are at high risk of not 
being able to meet future irrigation needs (Fader et 
al. 2016). A range of adaptation strategies are being 
studied or put in place either to store more water 
in hot and arid environments (e.g., with managed 
aquifer recharge) (Salameh et al. 2019), use and re-
cycle non-conventional water sources (Ait-Mouheb 
et al. 2018; Elkiran et al. 2019), desalinate seawater 
(Stanhill et al. 2015) or improve irrigation efficiency 
(Tarjuelo et al. 2015; El Jaouhari et al. 2018). All 
these strategies have some potential side effects 
in terms of energy requirements (Rodríguez-Díaz 
et al. 2011), GHG emissions, high capital invest-
ments and social acceptance (Daccache et al. 
2014; Chartzoulakis and Bertaki 2015). However, 
in arid zones, these are often the only alternatives 
to achieve sustainable agricultural intensification. 
Some solutions, like desalination, should be con-
sidered only where there is evidence that the natu-
ral recharge available in surface and underground 
storage might become limiting considering the 
economic and environmental dimensions of sus-
tainability (Stanhill et al. 2015).

Supplementary irrigation of rain-fed crops is also 
crucial for increasing the productivity of traditional 
Mediterranean rain-fed cropping systems, includ-
ing winter cereals or perennial crops such as olive 
and vineyards (Fraga et al. 2012; Tanasijevic et 
al. 2014). However, the introduction of new tech-
nologies for irrigation on traditional rain-fed or 
irrigated cropping systems has many systemic 
implications in the environmental, socio-cultural, 
institutional and economic domains (Ortega-Reig 
et al. 2017).

Increased water and soil salinity is also a threat 
for future Mediterranean cropping systems, 
particularly in coastal areas (Maggio et al. 2011; 
Pittalis et al. 2016). Adaptation strategies include 
the introduction of salt tolerant crop species for 
which there is increasing consumer demand. For 
example, there is increasing interest in quinoa 
germplasm and production in the Mediterranean 
Basin, in relation to its tolerance to salinity and 
water stress, high water use efficiency and the in-
creasing demand of gluten-free food (Hirich et al. 
2014; Lavini et al. 2014; Mahmoud 2017; Noulas et 
al. 2017).

Combined agro-ecological approaches to climate 
change adaptation in organic horticulture is sug-
gested by Diacono et al. (2016), following long-term 
field experiments that showed that such cropping 
systems can sustain the yield of cash crops in 
rotation, in spite of changes in temperature and 
rainfall.
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Pasturelands and rangelands will face multiple 
threats from expected drier and warmer climate in 
Mediterranean countries. These farming systems 
rely heavily on natural resources on marginal land, 
often characterized by shallow and oligotrophic 
soils, with low water holding capacity. Highland 
pastures and their biodiversity is being threatened 
by loss in biodiversity due to climate change (Dibari 
et al. 2015). Dono et al. (2016) showed that near 
future climate change will result in losses for rain-
fed grazing systems, mainly because of the shift in 
the probability distribution of rain-fed pasture and 
hay crop production due to drier springs caused 
by reduced rainfall and higher evapotranspiration, 
resulting in higher costs for purchasing external 
feeds or renting more land. Adaptation strategies 
range from incremental to transformational strat-
egies in this case. Silanikove and Koluman (2015) 
project an overall negative impact, but a positive 
role of dairy goats in adaptation to global warming 
when compared to dairy cows, given their higher 
tolerance to heat stress.

The savanna-type pastoral vegetation of the de-
hesa in Spain, montado in Portugal or pastures 
with scattered cork-oak trees in Sardinia and 
elsewhere in northern African countries are con-
sidered a multifunctional resource that can sup-
port adaptive responses to climate change and 
the provisioning of multiple ecosystem services 
(den Herder et al. 2017; Castro and Castro 2019). 
Mediterranean agro-silvopastoral systems gener-
ate unique habitats for plant and microbial diver-
sity, resulting in a wide range of services such as 
forage, wood and non-wood products, soil organic 
carbon sequestration and landscape cultural val-
ues (Bagella et al. 2013; Seddaiu et al. 2013, 2018; 
Rossetti et al. 2015; Tardy et al. 2015; Torralba et 
al. 2016; Garrido et al. 2017). Adaptation strategies 
in pastoral systems based on wooded pastures 
include actions that can prevent the threats of 
degradation due to abandonment (e.g., wildfires, 
loss of cultural landscape and heritage, increased 
drought stress) or intensification (e.g., lack of 
tree regeneration) (Garrido et al. 2017; Rolo and 
Moreno 2019). Given the complexity of the factors 
driving the sustainability of agro-silvopastoral sys-
tems, adaptation strategies should be designed 
and implemented through systemic and integrated 
approaches and not by just targeting a specific 
service or pastoral activity (Hernández-Morcillo 
et al. 2018). However, more attention should be 
devoted to these agro-silvopastoral systems, as 
they are currently overlooked by rural development 
policies in Europe, while agroforestry systems can 
effectively contribute to maximizing the productivi-
ty of marginal land (Mosquera-Losada et al. 2018). 

Agro-silvopastoral systems in the Mediterranean 
area are under threat because the income of farm-
ers that contribute to their maintenance does not 
acknowledge the many ecosystem services they 
provide (Fagerholm et al. 2016; Rodríguez-Ortega 
et al. 2018).

The adaptive capacity of grazing systems in the 
Mediterranean depends on local contexts, with 
contrasting trends in northern and southern 
countries, rain-fed or irrigated conditions. A gen-
eral trend towards increased specialization and 
related environmental risks is occurring almost 
everywhere, which is in contrast with the need 
for increased resilience to climate pressures and 
reduced environmental impacts (Rodríguez-Orte-
ga et al. 2017). Adaptive development strategies 
include enhancing the spatial dimension of graz-
ing systems through increased animal mobility, 
increased feeding self-sufficiency and integration 
of crop-livestock integration at the regional and 
sub-regional levels (Alary et al. 2019). These live-
stock farming systems would also respond to the 
ongoing change in human dietary recommenda-
tions, which is one of the drivers of the meat cri-
sis (D’Silva and Webster 2017). However, this may 
result in different environmental impacts in terms 
of greenhouse gas emissions, eutrophication and 
land use in different regions, depending on the in-
come level (Behrens et al. 2017).

Adaptation strategies are more complex for farm-
ers who have made large long-term investments 
following market pressures and productivity ob-
jectives. Dairy cattle farming systems rely mostly 
on irrigation water and are threatened by the in-
creasing frequency of heatwaves, to which highly 
productive cows are very sensitive (Lacetera 2019). 
These farming systems are facing uncertainties 
caused by fluctuating world feed prices, climate, 
market and environmental normative pressures 
(e.g., nitrate vulnerable zones), which are grad-
ually squeezing their marginal net returns (Dono 
et al. 2016). Adaptation strategies are constrained 
by multiple pressures and are often based on crop 
and animal diversification combined with improved 
animal feeding and genetics (Rojas-Downing et al. 
2017; Henry et al. 2018).

4.3.3.5 Freshwater ecosystems

Successful adaptation measures need to follow a 
large-scale hydrological approach to determine 
the origin of variations, which are usually related 
to human pressures, and to provide further strat-
egies for environmental management (Menció and 
Mas-Pla 2010). Conservation and restoration ef-
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forts traditionally carried out at a local scale need 
to be accompanied by land use and hydrological 
planning at a basin-wide scale in order to maintain 
stream ecosystem integrity and biodiversity (Bruno 
et al. 2014a, 2014b). In this sense, nature-based 
solutions can play an important role in maintain-
ing freshwater biodiversity, and because of their 
multifunctionality, in providing critical ecosystem 
services (e.g., food provisioning, erosion regulation 
and cultural ecosystem services) (Balzan et al. 
2019). Nature-based solutions (NbS) are defined by 
IUCN as “actions to protect, sustainably manage, 
and restore natural or modified ecosystems that 
address societal challenges effectively and adap-
tively, simultaneously providing human well-being 
and biodiversity benefits”38. 

The Mediterranean Strategy for Sustainable De-
velopment 2016-2025 prioritizes national action to 
ensure that natural water resources are extracted 
sustainably. However, reliable methods to assess 
water demand are needed. Such methods assess 
the dynamics and determine the main drivers of 
each type of water demand, and project future 
water uses (Charlton and Arnell 2011; Collet et 
al. 2013; Griffin et al. 2013; Reynard et al. 2014), 
with interdisciplinary approaches that combine 
physical and human features and incorporate cli-
mate change impacts at the local scale (Grouillet 
et al. 2015). Local water management planning 
and adaptation strategies need to be improved and 
updated in order to attain future water security 
(Koutroulis et al. 2013) (more on human securi-
ty related to water is highlighted in Chapter 5.3). 
Achieving integrated and sustainable water man-
agement will also require enhanced awareness 
of climate change effects and public demands for 
water-use efficiency and improved environmental 
quality (Grantham et al. 2013). Awareness of the 
practical implications of plausible hydro-climatic 
and socio-economic future scenarios will shift 
perceptions and preference towards a more sus-
tainable model (Koutroulis et al. 2010).

The success of mitigation and adaptation policies 
to restore sustainability depends on implementa-
tion efficiency at local level, where awareness and 
perception often pose barriers (Betzold 2015; La 
Jeunesse et al. 2015). Communicating relevant 
and targeted climate change information to stake-
holders and decision makers is crucial for gain-
ing commitment in the field. The projected water 
scarcity in the region highlights the important role 
for development and deployment of water con-

servation technologies and practices (Hejazi et al. 
2014) and the need for strategic resource planning 
from global to regional and local scales (Koutrou-
lis et al. 2013). Stakeholders, the beneficiaries of 
ecosystem services from river bodies and land-
scapes, play a key role in interpreting the impact 
of climate change on water resources and usage. 
A mixed methodology based on a transdisciplinary 
approach and the involvement of academia, pol-
icymakers, and local experts is suggested. Many 
physical models on the impacts of climate change 
and on water scarcity exist but approaches that 
are transdisciplinary with input from local stake-
holders and interpretation of intermediary results 
are limited (Rault et al. 2019). Improving the un-
derstanding of ecosystem responses to multiple 
stressors and defining measures to improve the 
ecological status of water bodies are needed and 
sought by the WFD (Menció and Mas-Pla 2010).

Preserving the natural flow variability of rivers and 
streams is key in sustainable environmental man-
agement plans in the Mediterranean (Menció and 
Mas-Pla 2010) and critical to the long-term conser-
vation of their unique biodiversity (Cid et al. 2017). 
The high variation in hydrological regimes in the 
region, however, tends to exacerbate the magnitude 
of negative responses to anthropogenic and climate 
impacts. For example, land use changes promote 
longer dry season flows, concentrating contami-
nants, allowing the accumulation of waste, algae, 
and plants, and fostering higher temperatures and 
lower dissolved oxygen levels, all of which may ex-
tirpate sensitive native species. Exotic species often 
thrive in rivers altered by human activity, further 
homogenizing river communities worldwide. Future 
research should rigorously evaluate the effects of 
management and restoration practices on river 
ecosystems, determine the cause–effect pathways 
leading from human disturbances to stream biolog-
ical communities, and incorporate analyses of the 
effects of scale, land use heterogeneity, and high 
temporal hydrological variability on stream com-
munities (Cooper et al. 2013).

The surface water-groundwater relationship is of 
major interest in the characterization of human 
pressures on stream hydrological dynamics and 
the ecological quality of Mediterranean reaches 
(Menció and Mas-Pla 2010). The ecological status of 
streams depends on an equilibrium between hydro-
logical processes and biological dynamics. Water 
discharge is the main requisite for a rich riparian 
habitat and impacts upon aquifer water storage and 

38 https://www.iucn.org/commissions/commission-ecosystem-management/our-work/nature-based-solutions
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on base flow generation have a significant effect on 
stream biology. Tools for managing these systems, 
such as those related to biomonitoring, climate 
change, and conservation, must be tailored to the 
seasonal and inter-annual variability of these sys-
tems.

Much of the ecological surface water monitoring 
under the WFD focuses on the assessment of bi-
ological structure, hydromorphological elements 
and chemical and physicochemical elements, all of 
which represent important information about eco-
system condition (Balzan et al., 2019). It is assumed 
that good ecological and chemical status have a 
positive impact on the capacity of ecosystems to 
provide ecosystem services and benefits to human 
well-being (Grizzetti et al. 2019). The link between 
waterbody condition, and ecosystem function and 
services has seldom been explored in detail, with 
the implication of water management for ecosys-
tem services being either implicit or overlooked 
(Vlachopoulou et al., 2014). Thus, tools that work at 
the ecosystem function level, connecting ecosystem 
condition to services, are required especially in cli-
mate change scenarios where ecosystem condition 
is expected to change with the climate and other in-
teracting drivers (Chapter 2). There are a number of 
studies from the Mediterranean Basin that demon-
strate that such links can be made in practice, as 
demonstrated by the study by Acreman et al. (2017), 
which shows how the implementation of beach res-
toration is associated with ecological recovery and 
recreational ecosystem services.

Wetland management and conservation in semi-ar-
id Mediterranean areas is necessary because they 
have been highly impacted by agriculture. This can 
be done with pressure and state indicators at land-
scape and wetland scales that reflect the status, 
condition, and trends of wetland ecosystems. Or-
tega et al. (2004) developed an ecological integrity 
index with 12 indicators (5 at the catchment scale 
and 7 at the wetland scale) based on the relation-
ship between pressures from anthropogenic activ-
ities and the ecological state of wetlands and their 
catchments, integrating environmental, biological, 
economic, and social issues. Overall, a wide ripar-
ian zone acts as a buffer for wetlands, diminishing 
the effects of intensive agriculture. Provisioning 
services are more relevant in normal and wet years, 
while regulating service water purification provides 
higher benefits in dry years, when threats to water 
quality are increased because of a decreased dilu-
tion capacity (Terrado et al. 2014). Protecting water 
towers in semi-arid regions expected to experience 
dramatic changes is essential to ensuring water 
provisioning in dry years. However, the protection 

of water resources is not sufficient if consumption 
rates continue or increase in the future. Actions 
should be planned to enhance the provision of 
regulating services (Terrado et al. 2014). Overall, in 
semi-arid basins under continuous human impact, 
hydrological ecosystem services are very sensitive 
to climate extremes, and service supply and de-
mand areas are usually spatially and temporally 
decoupled. Both aspects are relevant and need to 
be considered in basin management in semi-arid 
regions (Terrado et al. 2014).

Studies that consider the respective influences 
of climate, land cover (forest cover dynamics in 
hydrological processes) and water withdrawals 
on water availability (e.g., Chauvelon et al. 2003; 
Varela-Ortega et al. 2011) are required for proper 
adaptation measures but are still scarce, since the 
required data are often unavailable or not easily 
accessible over long periods (Sivapalan et al. 2003). 
Databases at large spatial and temporal scales are 
key to understanding the variability of hydrological 
systems, and in providing water managers with sci-
ence-based decision-making support information 
(Hannah et al. 2011). However, such databases are 
still too scarce in the Mediterranean, despite efforts 
to maintain and develop data networks at the region-
al and global levels. At this scale, the physical and 
human characteristics of catchments, especially in 
the Mediterranean, are extremely heterogeneous 
since they encompass extreme contrasts in terms 
of climatic, topographic and geological characteris-
tics, population distribution and water uses and are 
therefore difficult to define and grasp (Collet et al. 
2014). The climate variability of Mediterranean river 
basins also makes it difficult to describe general 
patterns which explain and predict the relationships 
between runoff, erosion and sediment transport 
(López-Tarazón et al. 2010; de Vente et al. 2011) 
and this is even more complicated in rivers affected 
by regulation. Τime-series on sediment transport 
(Batalla and Vericat 2009) and on lake ecosystems, 
especially those predating anthropogenic influenc-
es, are very scarce (Papastergiadou et al. 2007). 
Long-term data sets are also important for under-
standing the interactions among native species and 
introduced species. These are particularly valuable 
in understanding the influence of extreme events 
such as drought and floods (Magalhães et al. 2007; 
Bêche et al. 2009). Such studies, particularly in 
regulated systems, help guide flow recommenda-
tions to benefit native species but have only begun, 
although their value is already clear (Kiernan et al. 
2012; Resh et al. 2013). Long-term data sets that 
can reveal trends need to exceed the sub-decade 
scale for sustainable management of Mediterrane-
an-climate streams and rivers (Cid et al. 2017).
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BOX 4.1

Bio-indicators for the assessment of 
changes in Mediterranean marine 
ecosystems
Awareness of recent changes in ecological conditions in many seas 
has fostered a need to assess increasing anthropogenic pressures 
and their consequences on sediment and water quality, and to 
suggest measures to reverse this trend. In this context, the European 
Commission has implemented the Water Framework Directive (WFD, 
Directive 2008/56/EC) with the aim to obtain (or to maintain) a “good 
status” for all European waters by 2015. To support this, a large 
number of monitoring tools have been developed, including several 
bio-indicators such as phytoplankton, macro-algae, seagrass, 
angiosperms, fish faunas and soft substrate benthic invertebrate 
fauna, which are benthic foraminifera.

Phytoplankton and zooplankton are ecologically important groups 
in most aquatic ecosystems and have been an important component 
of biological monitoring programs in the Mediterranean (Abboud-Abi 
Saab et al. 2008, 2012; Tunin-Ley et al. 2009; Gharib et al. 2011; Tunin-
Ley and Lemée 2013; Abo-Taleb et al. 2016; Ouba et al. 2016; Abboud-
Abi Saab and Hassoun 2017). The genus Neoceratium (planktonic 
dinoflagellates) in the NW Mediterranean is known to be particularly 
sensitive to water temperature, and is responsive to global warming 
(Tunin-Ley et al. 2009; Tunin-Ley and Lemée 2013). Moreover, the WFD 
mandates the use of biological quality element (BQE) phytoplankton 
to assess the ecological status of coastal and transitional water 
bodies. Alternatively, Camp et al. (2016) propose a methodology to 
assess water-quality based on the use of chlorophyll-a (Chl-a), as a 
proxy of phytoplankton biomass.

For soft-bottom marine habitats, macrofauna is traditionally used 
as a bio-indicator, and a wide range of different biotic indices have 
been developed (Borja et al. 2016). The use of meiofauna, occurring in 
higher densities, is less developed. Among these, benthic foraminifera 
appear particularly suitable for bio-monitoring in the Mediterranean 
(Barras et al. 2014; Jorissen et al. 2018). The abundant and diverse 
benthic foraminifera faunas in the Mediterranean react rapidly to 
environmental changes such as organic pollution, eutrophication and 
oxygen depletion. These characteristics led to the development of a 
standardized biotic index based on foraminifera (Jorissen et al. 2018).

For the coralligenous, several indices of its health status have been 
suggested. One is the INDEX-COR approach, based on long time 
series of photographic sampling, standardized and used as a large 
spatial comparison tool (Sartoretto et al. 2017). This type of index 
integrates the sensitivity of different coralligenous taxa to organic 
matter and sediment deposition, the observable taxonomic richness 
and the structural complexity of the benthic assemblages. With 
these approaches, the health status of this complex ecosystem can 
be assessed without invasive or directly impacting methods. When 
deeper areas are considered in the coralligenous assemblages 
(e.g., from 30-40 to 200 m depth), Remotely Operated Vehicle (ROV) 
approaches may be useful (Rossi et al. 2008). The Mesophotic 

Assemblages Ecological Status (MAES) has been suggested as a tool 
for conservation and management procedures (Cánovas-Molina et al. 
2016). The MAES index is based on community structure, condition 
of the erect species and visible human impacts (Cánovas-Molina et 
al. 2016). A combined biomarker index can also be considered as a 
medium-long term monitoring approach. In selected populations of 
representative sessile species of the coralligenous, activity (e.g., 
polyp expansion), growth, reproductive output, stable isotopes, 
biochemical balance (protein-carbohydrate-lipids), fatty acids and 
C/N ratio may be used to estimate the nutritional condition and health 
status of populations or entire communities, considering the biology 
and ecology of each species (Rossi et al. 2017b).

For large vertebrates, cetaceans and seabirds are widely regarded as 
reliable indicators of the health of marine ecosystems due to their 
position near the top of the marine food web, conspicuous nature, 
and reliance on marine resources (Durant et al. 2009; Bossart 2011; 
Schwacke et al. 2013; Fossi and Panti 2017; Fossi et al. 2018). Some 
cetaceans and seabirds are reported as sentinels or indicators for 
the state of marine ecosystems because they are globally subject to 
multiple stress factors, such as the bioaccumulation of contaminants, 
infectious diseases, non-indigenous species, food depletion, and 
climate change (UNEP/MAP 2012; Poloczanska et al. 2013). The 
advantage of using cetaceans as sentinels is that they have physiology 
and/or diets similar to those of humans, so they can indicate earlier 
potential adverse health effects (Schwacke et al. 2013). For fish, red 
mullets (Mullus barbatus and M. surmuletus) have been widely used 
as quantitative bio-indicators of chemical contamination (Porte et al. 
2002; Storelli and Marcotrigiano 2005; Martínez-Gómez et al. 2017). 
For instance, the recent study by Cresson et al. (2014) confirmed that 
red mullets are efficient bio-indicators of Mercury (Hg), one of the 
main chemicals currently altering Mediterranean ecosystems.
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Urban biodiversity in the Mediterranean 
Region

Further to being a hotspot of biodiversity, the Mediterranean region is also one 
of the most densely urbanized areas in the world (FAO and Plan Bleu 2018). 
The overall population in the region grew by 190 million people between 1970 
and 2010, while the urban population increased by 163 million, with more 
74% of population growth concentrated in the countries of the southern part 
of the Mediterranean (UNEP/MAP 2012). Despite substantially lower growth 
rates of urban populations in European countries of the Mediterranean, 
surfaces occupied by urban settlements have also increased considerably due 
to tourism and decentralization of population from high density core cities 
towards low density residential areas and along the coastlines, as for instance 
in Barcelona (Domene and Saurí 2007) or Athens (Cecchini et al. 2019).

Also, patterns of land use changes differ between southern and northern parts 
of the region. In European countries, urbanization has been accompanied by 
abandonment of agriculture since the post war period and extended mainly 
onto different types of cultivated areas, and onto shrubland and/or herbaceous 
areas (García-Nieto et al. 2018), leading to substantial losses of biodiversity 
and of agricultural area, while shrubland and forest land increased (Domene 
and Saurí 2007; FAO and Plan Bleu 2018; García-Nieto et al. 2018).

The growth of north African peri-urban areas in that period occurred in 
parallel with an increase in irrigated arable land, permanent crops, complex 
cultivation patterns and shrublands and/or herbaceous areas and pastures, at 
the expense of non-irrigated arable land and forest, both around peri-urban 
areas, as well as at the national level. In southern Mediterranean countries, 
environmental change contributed, for example, to a rural exodus in Morocco 

between 1980 and 1990, and in Algeria and Tunisia in 1999 (García-Nieto et 
al. 2018).

Consequences for biodiversity and ecosystem 
services in urban areas

Consequences for biodiversity and ecosystem services available for urban 
areas differ accordingly. In most cases, urban areas replace former ag-
ricultural land, but, while in the southern part of the Mediterranean this 
coincides with an extension of cultivated areas outside urbanized areas, 
in most European countries the contemporary abandonment of agricul-
tural areas leads to an increase in shrubland and uncultivated areas and 
contributes to increasing vulnerability of surfaces, for instance with the 
threat of wildfires along the wildland-urban interface (San-Miguel-Ayanz 
et al. 2013; Lafortezza et al. 2015; Xanthopoulos 2015) and desertification 
(Salvati et al. 2015). Abandonment of agricultural lands also leads to the 
loss of cultural landscape management practices. For example, traditional 
Mediterranean agricultural landscapes are in many places characterized 
by terraces and dry walls which represent small scale practices of erosion 
prevention (Cecchini et al. 2019). Increasing soil sealing in urban areas and 
connected infrastructure and abandonment of historic techniques of land-
scape management lead to increasing risks from flooding and landslides 
(Salvati et al. 2015; García-Nieto et al. 2018).

The remaining ecosystems are increasingly under threat with particular 
risks for rare plants depending on small patch ecosystems with highly 
localized distributions even though they may be protected (Vimal et al. 
2012). Peri-urban areas nevertheless provide relevant services for urban 
populations, for instance the increase in areas of natural or semi-natural 

Nitrogen deposition and ecosystems

Climate change contributes to an increase in dry deposition of nitrogen 
and increases the negative impacts of excess atmospheric nitrogen 
on biodiversity (Oliveira et al. 2020). Reactive nitrogen (Nr) impacts 
vegetation through direct foliar damage, eutrophication, acidification, and 
susceptibility to secondary stress depending on the nitrogen form and 
concentration (Krupa 2003). Grassland, heathland and forest ecosystems 
are recognized as habitats vulnerable to Nr in Europe (Dise et al. 2011). In 
Spain, natural grasslands, particularly in the northern alpine area, were 
found to be the most threatened habitat followed by mountain ecosystems 
(García-Gómez et al. 2014). At least 14% of the Natura 2000 sites in 
western Iberia are at risk of eutrophication (Oliveira et al. 2020).

It is not yet clear if different wet-deposited forms of Nr (e.g., nitrate, NO3 
− versus ammonium, NH4+) have different effects on biodiversity. However, 
gaseous ammonia (NH3) can be particularly harmful to vegetation. The 
highest relative risk of biodiversity change in Natura 2000 sites due to NH3 

pollution in Portugal was found to be in peats, mires, bogs, and similar 
acidic and oligotrophic habitats (most located in the northern mountains), 
whereas in the Atlantic and Mediterranean climate zone (coastal, tidal, 
and scrubland habitats) they were deemed the least sensitive in Portugal 
(Pinho et al. 2018).

Exceedance of critical loads for nitrogen is linked to reduced plant 
species richness in a broad range of European ecosystems (Dise et 
al. 2011). Experimental evidence shows that species richness and 
abundance resulted in larger declines with greater amounts of annual  
N addition including in semi-arid areas (Midolo et al. 2019). Reductions 
in the abundance of individual species were greater for N-sensitive plant 
life-form types (legumes and non-vascular plants) (Ochoa-Hueso et al. 
2014, 2017; Midolo et al. 2019).

Several conservation plants (e.g., orchids and carnivorous) and 
cryptogams are naturally adapted to low environment N supply. Thus, 
increasing Nr alters the natural ecological balance. This results in the loss 

BOX 4.2
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BOX 4.2

BOX 4.3

vegetation such as ecosystem fragments, reserves, nature parks, forests, 
and river banks, which house varying amounts of native species, potentially 
provide cultural services. Formal and informal forms of urban agriculture 
and horticulture (Domene and Saurí 2007; Cecchini et al. 2019) present 
an opportunity for integration into of diets for urban residents and provide 
both provisioning and cultural services, as these areas are also used for 
leisure activities (Domene and Saurí 2007; Cecchini et al. 2019; Palau-Sal-
vador et al. 2019).

The expansion of peri-urban agriculture, for instance, olive cultivation for 
self-consumption or small-scale economic production, have counteracted 
land use change in the peri-urban areas of several cities in the Mediter-
ranean Basin (García-Nieto et al. 2018; Cecchini et al. 2019). Olive land-
scapes have a high tolerance to pests and are characterized by a stable 
trend of economic production, and abundant insect fauna contributing to 
biodiversity conservation. They furthermore show a higher resistance to 
wildfires than other Mediterranean vegetation. The economic stability of 
olive oil production in small groves, like other small-scale agricultural 
areas and the status of protected natural areas (e.g., coastal woods in the 
case of Rome) in the green belt around cities contributes to the ability of 
these areas to form an efficient barrier against urban dispersion and reduce 
the impacts of soil sealing on the hydrological cycle and on ecosystem 
services loss (Salvati et al. 2015; Cecchini et al. 2019).

Urban biodiversity and ecosystem services

Despite the important provisioning and cultural services and their 
increasing popularity in many cities, urban gardening seems to be not 
as effective in protecting peri-urban areas from land use changes as 

in the case of peri-urban agriculture observed in Athens (Domene and 
Saurí 2007; Heywood 2017; Cecchini et al. 2019). This may be due to 
less stable legal position of such areas which are often the result of 
squatting on private or, more often, public land (Domene and Saurí 2007) 
and their less consolidated economic status. In Rome, managed spaces 
with cultivated vegetation such as parks and gardens represent a lower 
level of resilience against transformation despite their importance for 
cultural and regulating services (e.g., leisure and heat mitigation) for 
urban residents (Salvati et al. 2015).

In many urban areas of the Mediterranean, street trees provide important 
regulating services for human well-being by offering shade and reducing 
heat impacts during summer due to their evaporation rates and the 
albedo created by foliage (Rana and Ferrara 2019). They also provide 
important cultural services as characterizing elements of Mediterranean 
urban landscapes (Heywood 2017).

Furthermore, urban wastelands and shrublands which are mainly 
colonized by weeds, ruderal plants and non-indigenous species, in many 
cases house considerable numbers of native plants and are potential 
places for valuable biodiversity (Heywood 2017). The importance of green 
spaces in urban areas is increasingly recognized by Mediterranean cities, 
which are increasingly engaging in urban green infrastructure projects, 
preserving remnants of biodiversity and natural areas within cities. These 
are expected to provide important regulating, cultural and provisioning 
services but there is a general lack of data on urban biodiversity in 
urban and peri-urban areas of the Mediterranean (Heywood 2017).

of the most sensitive species, which are often a priority for protection, and 
their replacement by non-indigenous or other opportunistic species that 
prefer high rates of nitrogen supply (Bobbink et al. 2010). Lichens and 
bryophytes are among the most sensitive organisms to N pollution at the 
ecosystem level (Cape et al. 2009), having a different response depending 
on their functional response group (Pinho et al. 2008, 2009, 2011, 2012b, 
2012a; Jovan et al. 2012).

There are some clear examples of reductions in faunal diversity that 
can be linked to Nr deposition, but overall, our knowledge of faunal 
effects is still limited (Dise et al. 2011). Changes to above-ground 
faunal communities probably occur primarily through changes in 
vegetation diversity, composition or structure (Murray et al. 2006). The 
evidence strongly suggests that ecological communities respond to the 
accumulated pool of plant-available N in the soil. Thus, the cumulative 
load of enhanced Nr impacting an ecosystem is probably important 
(Stevens et al. 2011). Because of this response to cumulative inputs, it is 
likely that biodiversity has been in decline in Europe for many decades due 

to enhanced Nr deposition (Bobbink et al. 2010). Equally, full recovery in 
response to reduced Nr deposition is likely to be slow, especially in highly 
impacted ecosystems. In some cases, recovery may require management 
intervention.
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Mediterranean islands

Islands as laboratories

The high concentration of islands (> 10,000) is one of the features 
which contributes to the Mediterranean’s unique character, placing 
the region within the richest in the world in terms of islands 
and archipelagos (Médail 2017). In addition to being biological 
laboratories, the largest of the islands are also the centers of many 
of the world’s ancient civilizations (Patton 1996). On these islands, 
the diversity of biogeography, geology and human settlement has 
produced exceptionally high numbers of biodiversity and endemicity, 
earning them a place in the global biodiversity hotpots list (Médail 
and Quézel 1997; Vogiatzakis et al. 2016; Médail 2017). In addition to 
the role as tertiary and glacial refuges, islands have also contributed 
to more recent plant diversification (Médail 2017). Biodiversity on 
islands display an insular syndrome due to abiotic conditions (nature 
of isolation, particular climate) and their own biogeographical history, 
and are characterized by unique specific assembly (with several 
endemics) and biotic interactions (de Montmollin and Strahm 2005; 
Blondel et al. 2010; Médail 2013, 2017; Schatz 2017).

Recent evidence of change

Despite their relatively small contribution to greenhouse gas 
emissions, Mediterranean islands are likely to be adversely affected 
by climate change, in synergy with ongoing land use changes.

•  Land-use change: The landscapes of Mediterranean islands have 
evolved as the result of similar pressures to the mainland generated 
by socio-economic and political factors but amplified on a "matrix" 
of limited space. Land use changes and associated impacts differ 
significantly depending on the size of the island and therefore 
demographics, as well as its popularity as tourist destination 
(Vogiatzakis et al. 2008). Therefore, to date there is no consensus 
on the trends of changes since islands seems to respond/behave 
individualistically (Vogiatzakis et al. 2008; Harris 2012). Recent 
land uses are associated with temporal and spatial shifts in land-
use systems with polarization of land-use intensity, particularly 
on small/medium size islands (Tzanopoulos and Vogiatzakis 2011; 
Balzan et al. 2018).

•  Climate evidence: Observed trends for winter (Nov–Feb) 
precipitation (mm/50 years) and summer (Jun–Sep) temperature 
(°C/50 years) for Mediterranean island regions during the second 
half of the twentieth century do not show a consistent climate 
pattern (Vogiatzakis et al. 2016).

•  Biological/ecosystems evidence: Documented evidence on 
plant and animal phenology changes (Peñuelas et al. 2002; Gordo 
and Sanz 2010), range shifts (Lenoir et al. 2008) and changes in 
the function, structure and dynamics of ecosystems e.g., temporal 
mismatches among mutualistic partners) (Visser et al. 2004), 
species loss and changes (+/-) in species richness (Kazakis et al. 
2007). Plant communities are steadily changing, such as orchids in 
Corsica (Vogt-Schilb et al. 2016), as well as specialized plant-insect 

interactions (pollination, seed dispersal) (Traveset and Riera 2005; 
Blondel et al. 2010; Stefanaki et al. 2015).

Climate change projections and islands

•  Current scenarios: Projected trends from various climate models 
agree as far as the direction of change in precipitation and temper-
ature regimes are concerned (Table 2.1 in Section 2.2) (Vogiatzakis 
et al. 2016).

•  Sea level rise: For the Aegean archipelagos, Monioudi et al. (2017) 
assume mean sea-level rise of 0.5 m for RCP4.5 and predict that 
a storm-induced sea level rise of 0.6 m would result in complete 
erosion of between 31 and 88% of all beaches, at least temporarily.

•  Island representation and model resolution: In most modeling 
studies (niche models or GCMs), islands are simply a subset of the 
Mediterranean (Araújo et al. 2006; Settele et al. 2008). As a result, 
neither distribution nor climate data have sufficient resolution to 
allow climate envelope models for most endemic island taxa (Henle 
et al. 2010).

•  Synergies with land cover changes: Changes in land use (Settele 
et al. 2005) coupled with climate models predict modifications 
to species climate space (Settele et al. 2008) and islands are no 
different. Documented land cover changes related to urban/tourism 
development and increasing linear infrastructure are already having 
an impact on island biodiversity (Zomeni and Vogiatzakis 2014).

Vulnerability/resilience

The vulnerability of Mediterranean island systems to past and recent 
extinctions has been well documented (de Montmollin and Strahm 
2005; Foufopoulos et al. 2011). A recent assessment of global 
imminent extinctions includes two Mediterranean Islands (Ricketts et 
al. 2005). Compared to the rest of the Mediterranean Basin, islands 
have always been more vulnerable to invasion by exotic species (Hulme 
2004). Human activity will be the limiting factor which will determine 
the future of island flora. Islands are representative examples in 
the Mediterranean of the co-evolution of social-ecological systems 
intensified by the element of insularity and which are currently 
under threat and more susceptible to externalities due to (i) limited 
resources/space, (ii) administrative/political leverage, (iii) institutional 
capacities. While many of the islands have experienced demographic 
losses, concerning their permanent inhabitants, they have become 
principal tourist destinations (Ioannides et al. 2001) and islands are 
being faced with a key challenge of balancing economic benefits from 
ecosystem services delivery (tourism, agriculture) with environmental 
pressures.

Conservation and adaptation

On islands, opportunities for (human assisted) adaptation are limited. 
The lack of available space for wildlife to shift presents significant 
barriers to the natural adaptation of species and habitats. It also 
leads to more intense land-use conflicts, therefore increasing size 
of protected areas, and connections might be problematic. In an 
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attempt to promote "climate-wise connectivity" (Keeley et al. 2018), 
areas not (significantly) affected by climate change could act as 
refugia to species in the future. Many of the island endemic species 
of today have survived past climate changes in places in such refugia 
(Vogiatzakis and Griffiths 2008; Vogiatzakis 2012). In the case of 
island clusters, the suitable climate space might be a neighboring 
island, although there are many examples, particularly in the Aegean, 
where neighboring islands have different floras (Kallimanis et al. 
2010). Therefore, biogeography may be more important than climate 
per se in interpreting species distribution patterns (Whittaker and 
Fernandez-Palacios 2007). Building a coherent ‘‘network’’ of protected 
areas across islands (e.g., in the Aegean) might provide solutions to 
safeguarding common biotic elements (species or habitats). At the 
government level, adaptation should include increased institutional 
capacity for innovation, the increase of monitoring activities, adaptive 
management, and promotion of inter-island collaboration (Kark et al. 
2009). In the case of managing island ecosystems and their services, 
the key priorities for the future must be to:

•  identify ecosystem service capacity hotspots and how they can be 
affected under climate change scenarios;

•  identify ecosystem service demand and flows in hotspots and 
manage green infrastructure and co-created nature-based solutions 
to provide synergies for biodiversity conservation and ecosystem 
services for human well-being;

•  manage protected areas for ecosystem service provision given the 
fact that lack of space is also problematic;

•  evaluate tradeoffs and thresholds of ecosystem service provision 
and assess the impacts from demographics and tourism, as well as 
land use and climate change projections.
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Rábago I et al. 2014 Nitrogen deposition in Spain: 
Modeled patterns and threatened habitats within 
the Natura 2000 network. Sci. Total Environ. 485–486, 
450–460. doi: 10.1016/j.scitotenv.2014.03.112

García-Nieto AP, García-Llorente M, Iniesta-Arandia I, 
Martín-López B 2013 Mapping forest ecosystem ser-
vices: From providing units to beneficiaries. Ecosyst. 
Serv. 4, 126–138. doi: 10.1016/j.ecoser.2013.03.003

García-Nieto AP, Geijzendorffer IR, Baró F, Roche PK,  
Bondeau A et al. 2018 Impacts of urbanization around 
Mediterranean cities: Changes in ecosystem service 
supply. Ecol. Indic. 91, 589–606.  
doi: 10.1016/j.ecolind.2018.03.082

García-Romero A, Muñoz J, Andrés N, Palacios D 2010 
Relationship between climate change and vegetation 
distribution in the Mediterranean mountains: Man-
zanares Head valley, Sierra De Guadarrama (Central 
Spain). Clim. Change 100, 645–666.  
doi: 10.1007/s10584-009-9727-7

García-Ruiz JM, Lana-Renault N 2011 Hydrological and 
erosive consequences of farmland abandonment in 
Europe, with special reference to the Mediterranean 
region - A review. Agric. Ecosyst. Environ. 140, 317–
338. doi: 10.1016/j.agee.2011.01.003

García-Ruiz JM, López Moreno JI, Vicente-Serrano SM,  
Lasanta–Martínez T, Beguería S 2011 Mediterranean 
water resources in a global change scenario.  
Earth-Science Rev. 105, 121–139.  
doi: 10.1016/J.EARSCIREV.2011.01.006

García C, Amengual A, Homar V, Zamora A 2017 Losing 
water in temporary streams on a Mediterranean is-
land: Effects of climate and land-cover changes. Glob.  

Planet. Change 148, 139–152.  
doi: 10.1016/J.GLOPLACHA.2016.11.010

Garde RJ 2006 River morphology. , ed. New Age Interna-
tional.

Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA,  
Bommarco R et al. 2013 Wild pollinators enhance fruit 
set of crops regardless of honey bee abundance. Sci-
ence (80-. ). 339, 1608–1611.  
doi: 10.1126/science.1230200

Garofano-Gomez V, Martınez-Capel F, Peredo-Parada M, 
Olaya Marin EJ, Munoz Mas R et al. 2011 Assessing 
hydromorphological and floristic patterns along a reg-
ulated Mediterranean river: The Serpis River (Spain). 
Limnetica 30, 307–328.

Garófano Gómez V 2013 Riparian vegetation patterns ac-
cording to hydrogeomorphological factors at different 
spatial and temporal scales in Mediterranean rivers. 
doi: 10.4995/thesis/10251/29395

Garrabou J, Ballesteros E, Zabala M 2002 Structure and 
dynamics of north-western Mediterranean rocky 
benthic communities along a depth gradient. Estuar. 
Coast. Shelf Sci. 55, 493–508.  
doi: 10.1006/ecss.2001.0920

Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonné 
P et al. 2009 Mass mortality in Northwestern Mediter-
ranean rocky benthic communities: Effects of the 2003 
heat wave. Glob. Chang. Biol. 15, 1090–1103.  
doi: 10.1111/j.1365-2486.2008.01823.x

Garrabou J, Gómez-Gras D, Ledoux J-B, Linares C, Ben-
soussan N et al. 2019 Collaborative Database to Track 
Mass Mortality Events in the Mediterranean Sea. 
Front. Mar. Sci. 6, 707. doi: 10.3389/fmars.2019.00707

Garrabou J, Perez T, Sartoretto S, Harmelin JG 2001 Mass 
mortality event in red coral Corallium rubrum popula-
tions in the Provence region (France, NW Mediterra-
nean). Mar. Ecol. Prog. Ser. 217, 263–272.  
doi: 10.3354/meps217263

Garrido P, Elbakidze M, Angelstam P, Plieninger T, Pulido F 
et al. 2017 Stakeholder perspectives of wood-pasture 
ecosystem services: A case study from Iberian dehe-
sas. Land use policy 60, 324–333.  
doi: 10.1016/J.LANDUSEPOL.2016.10.022

Gasith A, Resh VH 1999 Streams in Mediterranean Climate 
Regions: Abiotic Influences and Biotic Responses to 
Predictable Seasonal Events. Annu. Rev. Ecol. Syst. 30, 
51–81. doi: 10.1146/annurev.ecolsys.30.1.51

Gatti G, Bianchi CN, Parravicini V, Rovere A, Peirano A et 
al. 2015 Ecological change, sliding baselines and the 
importance of historical data: lessons from combing 
observational and quantitative data on a temperate 
reef over 70 years. PLoS One 10, e0118581.  
doi: 10.1371/journal.pone.0118581

Gauquelin T, Bertaudiere V, Montes N, Badri W, Asmode 
JF 1999 Endangered stands of thuriferous juniper in 
the western Mediterranean basin: Ecological status, 
conservation and management. Biodivers. Conserv. 8, 
1479–1498. doi: 10.1023/A:1008966808796

CHAPTER 4 - ECOSYSTEMS

https://doi.org/10.1371/journal.pone.0110762
https://doi.org/10.1111/geb.12094
https://doi.org/10.1038/ncomms2328
https://doi.org/10.1007/s42995-020-00048-w
https://doi.org/10.1016/j.jmarsys.2011.04.003
https://doi.org/10.1016/j.scitotenv.2014.03.112
https://doi.org/10.1016/j.ecoser.2013.03.003
https://doi.org/10.1016/j.ecolind.2018.03.082
https://doi.org/10.1007/s10584-009-9727-7
https://doi.org/10.1016/j.agee.2011.01.003
https://doi.org/10.1016/J.EARSCIREV.2011.01.006
https://doi.org/10.1016/J.GLOPLACHA.2016.11.010
https://doi.org/10.1126/science.1230200
https://doi.org/10.4995/thesis/10251/29395
https://doi.org/10.1006/ecss.2001.0920
https://doi.org/10.1111/j.1365-2486.2008.01823.x
https://doi.org/10.3389/fmars.2019.00707
https://doi.org/10.3354/meps217263
https://doi.org/10.1016/J.LANDUSEPOL.2016.10.022
https://doi.org/10.1146/annurev.ecolsys.30.1.51
https://doi.org/10.1371/journal.pone.0118581
https://doi.org/10.1023/A:1008966808796


436 CLIMATE AND ENVIRONMENTAL CHANGE IN THE MEDITERRANEAN BASIN  |  MedECC

Gauquelin T, Michon G, Joffre R, Duponnois R, Génin D et 
al. 2018 Mediterranean forests, land use and climate 
change: a social-ecological perspective. Reg. Environ. 
Chang. 18, 623–636. doi: 10.1007/s10113-016-0994-3

Gazeau F, Alliouane S, Bock C, Bramanti L, López Correa 
M et al. 2014 Impact of ocean acidification and warm-
ing on the Mediterranean mussel (Mytilus galloprovin-
cialis). Front. Mar. Sci. 1, 62.  
doi: 10.3389/fmars.2014.00062

Gazol A, Camarero JJ, Vicente-Serrano SM, Sánchez-Sal-
guero R, Gutiérrez E et al. 2018 Forest resilience to 
drought varies across biomes. Glob. Chang. Biol. 24, 
2143–2158. doi: 10.1111/gcb.14082

Geijzendorffer IR, Beltrame C, Chazee L, Gaget E, Galews-
ki T et al. 2019a A More Effective Ramsar Convention 
for the Conservation of Mediterranean Wetlands. 
Front. Ecol. Evol. 7. doi: 10.3389/fevo.2019.00021

Geijzendorffer IR, Galewski T, Guelmami A, Perennou C, 
Popoff N et al. 2019b Mediterranean Wetlands: A Gra-
dient from Natural Resilience to a Fragile Social-Eco-
system. Atlas Ecosyst. Serv., 83–89.  
doi: 10.1007/978-3-319-96229-0_14

Gendaszek AS, Magirl CS, Czuba CR 2012 Geomorphic re-
sponse to flow regulation and channel and floodplain 
alteration in the gravel-bedded Cedar River, Washing-
ton, USA. Geomorphology 179, 258–268.  
doi: 10.1016/j.geomorph.2012.08.017

Genev M 2003 Patterns of runoff change in Bulgaria. IAHS-
AISH Publ., 79–85.

Gennari G, Tamburini F, Ariztegui D, Hajdas I, Spezzaferri S 
2009 Geochemical evidence for high-resolution vari-
ations during deposition of the Holocene S1 sapropel 
on the Cretan Ridge, Eastern Mediterranean. Palaeo-
geogr. Palaeoclimatol. Palaeoecol. 273, 239–248.  
doi: 10.1016/j.palaeo.2008.06.007

Gentilesca T, Camarero JJ, Colangelo M, Nolè A, Ripullone 
F 2017 Drought-induced oak decline in the western 
mediterranean region: An overview on current ev-
idences, mechanisms and management options to 
improve forest resilience. IForest 10, 796–806.  
doi: 10.3832/ifor2317-010

Gharib SM, El-Sherif ZM, Abdel-Halim AM, Radwan AA 
2011 Phytoplankton and environmental variables as 
a water quality indicator for the beaches at Matrouh, 
south-eastern Mediterranean Sea, Egypt: an assess-
ment. Oceanologia 53, 819–836.  
doi: 10.5697/oc.53-3.819

Giakoumakis SG, Baloutsos G 1997 Investigation of trend 
in hydrological time series of the Evinos River basin. 
Hydrol. Sci. J. 42, 81–88.  
doi: 10.1080/02626669709492007

Giakoumi S, Hermoso V, Carvalho SB, Markantonatou V, 
Dagys M et al. 2019 Conserving European biodiversity 
across realms. Conserv. Lett. 12, e12586.  
doi: 10.1111/conl.12586

Giakoumi S, Sini M, Gerovasileiou V, Mazor T, Beher J et al. 
2013 Ecoregion-based conservation planning in the 

Mediterranean: Dealing with large-scale heterogene-
ity. PLoS One 8, e76449.  
doi: 10.1371/journal.pone.0076449

Gili JM, Sardá R, Madurell T, Rossi S 2014 Zoobenthos, in 
The Mediterranean Sea, eds. Goffredo S,  Dubinsky Z 
(Dordrecht, Netherlands: Springer).  
doi: 10.1007/978-94-007-6704-1_12

Giuggiola A, Bugmann H, Zingg A, Dobbertin M, Rigling A 
2013 Reduction of stand density increases drought re-
sistance in xeric Scots pine forests. For. Ecol. Manage. 
310, 827–835. doi: 10.1016/j.foreco.2013.09.030

Glibert PM, Anderson DM, Gentien P, Granéli E, Sellner 
K 2005 The global, complex phenomena of Harmful 
Algal Blooms. Oceanography 18, 136–147.  
doi: 10.5670/oceanog.2005.49

Gober P 2010 Desert urbanization and the challenges of 
water sustainability. Curr. Opin. Environ. Sustain. 2, 
144–150. doi: 10.1016/j.cosust.2010.06.006

Goffart A, Collignon A, Lejeune P, Hecq J-H 2017 Thresh-
olds of plankton community change in a Mediterra-
nean coastal area : results from a long-term (1979-
2014) time series. in IMBIZO V : Marine biosphere 
research for a sustainable ocean : Linking ecosystems, 
future states and resource management  
https://orbi.uliege.be/handle/2268/219919  
[Accessed September 9, 2019].

Goffart A, Hecq J-H, Legendre L 2002 Changes in the de-
velopment of the winter-spring phytoplankton bloom 
in the Bay of Calvi (NW Mediterranean) over the last 
two decades: a response to changing climate? Mar. 
Ecol. Prog. Ser. 236. doi: 10.3354/meps236045

Gómez-Aparicio L, Zamora R, Castro J, Hódar JA 2008 
Facilitation of tree saplings by nurse plants: Micro-
habitat amelioration or protection against herbivores? 
J. Veg. Sci. 19, 161–172. doi: 10.3170/2008-8-18347

Gómez-Gras D, Linares C, de Caralt S, Cebrian E, Frle-
ta-Valić M et al. 2019 Response diversity in Mediter-
ranean coralligenous assemblages facing climate 
change: Insights from a multispecific thermotoler-
ance experiment. Ecol. Evol. 9, 4168–4180.  
doi: 10.1002/ece3.5045

González E, González-Sanchis M, Cabezas Á, Comín FA, 
Muller E 2010 Recent Changes in the Riparian Forest 
of a Large Regulated Mediterranean River: Implica-
tions for Management. Environ. Manage. 45, 669–681.  
doi: 10.1007/s00267-010-9441-2

Gordo O, Sanz JJ 2010 Impact of climate change on plant 
phenology in Mediterranean ecosystems. Glob. Chang. 
Biol. 16, 1082–1106.  
doi: 10.1111/j.1365-2486.2009.02084.x

Gori A, Viladrich N, Gili J-M, Kotta M, Cucio C et al. 2012 
Reproductive cycle and trophic ecology in deep versus 
shallow populations of the Mediterranean gorgonian 
Eunicella singularis (Cap de Creus, northwestern Med-
iterranean Sea). Coral Reefs 31, 823–837.  
doi: 10.1007/s00338-012-0904-1

Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barančok 

CHAPTER 4 - ECOSYSTEMS

https://doi.org/10.1007/s10113-016-0994-3
https://doi.org/10.3389/fmars.2014.00062
https://doi.org/10.1111/gcb.14082
https://doi.org/10.3389/fevo.2019.00021
https://doi.org/10.1007/978-3-319-96229-0_14
https://doi.org/10.1016/j.geomorph.2012.08.017
https://doi.org/10.1016/j.palaeo.2008.06.007
https://doi.org/10.3832/ifor2317-010
https://doi.org/10.5697/oc.53-3.819 
https://doi.org/10.1080/02626669709492007
https://doi.org/10.1111/conl.12586
https://doi.org/10.1371/journal.pone.0076449
https://doi.org/10.1007/978-94-007-6704-1_12
https://doi.org/10.1016/j.foreco.2013.09.030
https://doi.org/10.5670/oceanog.2005.49
https://doi.org/10.1016/j.cosust.2010.06.006
https://orbi.uliege.be/handle/2268/219919
https://doi.org/10.3354/meps236045
https://doi.org/10.3170/2008-8-18347
https://doi.org/10.1002/ece3.5045
https://doi.org/10.1007/s00267-010-9441-2
https://doi.org/10.1111/j.1365-2486.2009.02084.x
https://doi.org/10.1007/s00338-012-0904-1


437CLIMATE AND ENVIRONMENTAL CHANGE IN THE MEDITERRANEAN BASIN  |  MedECC

P et al. 2012 Continent-wide response of mountain 
vegetation to climate change. Nat. Clim. Chang. 2, 
111–115. doi: 10.1038/nclimate1329

Goyet C, Hassoun AER, Gemayel E, Touratier F, Abboud-Abi 
Saab M et al. 2016 Thermodynamic forecasts of the 
Mediterranean Sea acidification. Mediterr. Mar. Sci. 17, 
508–518. doi: 10.12681/mms.1487

Grantham TE, Figueroa R, Prat N 2013 Water management 
in mediterranean river basins: a comparison of man-
agement frameworks, physical impacts, and ecologi-
cal responses. Hydrobiologia 719, 451–482.  
doi: 10.1007/s10750-012-1289-4

Greenhill L, Kenter JO, Dannevig H 2020 Adaptation to 
climate change–related ocean acidification: An adap-
tive governance approach. Ocean Coast. Manag. 191, 
105176. doi: 10.1016/j.ocecoaman.2020.105176

Grelaud M, Marino G, Ziveri P, Rohling EJ 2012 Abrupt 
shoaling of the nutricline in response to massive 
freshwater flooding at the onset of the last interglacial 
sapropel event. Paleoceanography 27.  
doi: 10.1029/2012PA002288

Griffin MT, Montz BE, S. Arrigo J 2013 Evaluating climate 
change induced water stress: A case study of the Low-
er Cape Fear basin, NC. Appl. Geogr. 40, 115–128.  
doi: 10.1016/j.apgeog.2013.02.009

Griffith AW, Gobler CJ 2020 Harmful algal blooms:  
A climate change co-stressor in marine and freshwa-
ter ecosystems. Harmful Algae 91, 101590.  
doi: 10.1016/j.hal.2019.03.008

Grizzetti B, Liquete C, Pistocchi A, Vigiak O, Zulian G et 
al. 2019 Relationship between ecological condition 
and ecosystem services in European rivers, lakes and 
coastal waters. Sci. Total Environ. 671, 452–465.  
doi: 10.1016/j.scitotenv.2019.03.155

Grouillet B, Fabre J, Ruelland D, Dezetter A 2015 Historical 
reconstruction and 2050 projections of water demand 
under anthropogenic and climate changes in two 
contrasted Mediterranean catchments. J. Hydrol. 522, 
684–696. doi: 10.1016/j.jhydrol.2015.01.029

Grove AT, Rackham O 2003 The nature of Mediterranean 
Europe: an ecological history. New Haven: Yale Univer-
sity Press.

Gubbay S, Sanders N, Haynes T, Janssen JAM, Rodwell JR 
et al. 2016 European Red list of habitats. Part 1. Marine 
habitats. Luxembourg: Publications Office of the Euro-
pean Union.

Gudka M, Davies J, Poulsen L, Schulte-Herbrüggen B, 
MacKinnon K et al. 2014 Conserving dryland biodiver-
sity: a future vision of sustainable dryland develop-
ment. Biodiversity 15, 143–147.  
doi: 10.1080/14888386.2014.930716

Guerra CA, Metzger MJ, Maes J, Pinto-Correia T 2016 Pol-
icy impacts on regulating ecosystem services: looking 
at the implications of 60 years of landscape change on 
soil erosion prevention in a Mediterranean silvo-pas-
toral system. Landsc. Ecol. 31, 271–290.  
doi: 10.1007/s10980-015-0241-1

Guerrero E, Gili J-M, Grinyó J, Raya V, Sabatés A 2018 
Long-term changes in the planktonic cnidarian com-
munity in a mesoscale area of the NW Mediterranean. 
PLoS One 13, e0196431.  
doi: 10.1371/journal.pone.0196431

Gugliermetti F, Cinquepalmi F, Astiaso Garcia D 2007 The 
use of environmental sensitivity indices (ESI) maps for 
the evaluation of oil spill risk in Mediterranean coast-
lines and coastal waters. WIT Trans. Ecol. Environ. 102, 
8. doi: 10.2495/sdp070572

Guidetti P, Bianchi CN, La Mesa G, Modena M, Morri C et 
al. 2002 Abundance and size structure of Thalassoma 
pavo (Pisces: Labridae) in the western Mediterranean 
Sea: variability at different spatial scales. J. Mar. Biol. 
Assoc. United Kingdom 82, 495–500.  
doi: 10.1017/S0025315402005775

Guijarro M, Madrigal J, Hernando C, Sánchez de Ron D, 
Vázquez de la Cueva A 2017 Las repoblaciones y los 
incendios forestales, in La Restauración Forestal de 
España: 75 Años de Una Ilusión, eds. Permán García 
J, Iriarte Goñi I,  Lario Leza FJ (Madrid, España: Min-
isterio de Agricultura y Pesca, Alimentación y Medio 
Ambiente), 343–371.

Guiot J, Cramer W 2016 Climate change: The 2015 Paris 
Agreement thresholds and Mediterranean basin  
ecosystems. Science (80-. ). 354, 4528–4532.  
doi: 10.1126/science.aah5015

Guiot J, Kaniewski D 2015 The Mediterranean Basin and 
Southern Europe in a warmer world: What can we learn 
from the past?. doi: 10.3389/feart.2015.00028

Günlü A, Kadıoğulları AI, Keleş S, Başkent EZ 2009 Spatio-
temporal changes of landscape pattern in response to 
deforestation in Northeastern Turkey: A case study in 
Rize. Environ. Monit. Assess. 148, 127–137.  
doi: 10.1007/s10661-007-0144-y

Guyot V, Castagneyrol B, Vialatte A, Deconchat M, Jactel 
H 2016 Tree diversity reduces pest damage in mature 
forests across Europe. Biol. Lett. 12, 20151037.  
doi: 10.1098/rsbl.2015.1037

Haddeland I, Heinke J, Biemans H, Eisner S, Flörke M et 
al. 2014 Global water resources affected by human 
interventions and climate change. Proc. Natl. Acad. Sci. 
U. S. A. 111, 3251–3256. doi: 10.1073/pnas.1222475110

Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome 
E, Fine M et al. 2008 Volcanic carbon dioxide vents 
show ecosystem effects of ocean acidification. Nature 
454, 96–99. doi: 10.1038/nature07051

Hall DC, Hall J V, Murray SN 2002 Contingent Valuation of 
Marine Protected Areas: Southern California Rocky 
Intertidal Ecosystems. Nat. Resour. Model. 15, 335–
368. doi: 10.1111/j.1939-7445.2002.tb00093.x

Hallegatte S, Billé R, Magnan AK, Gemenne F 2009 La 
Méditerranée au futur : des impacts du changement 
climatique aux enjeux de l’adaptation.

Halpern BS, Ebert CM, Kappel C V., Madin EMP, Micheli 
F et al. 2009 Global priority areas for incorporating 
land-sea connections in marine conservation. Con-

CHAPTER 4 - ECOSYSTEMS

https://doi.org/10.1038/nclimate1329
https://doi.org/10.12681/mms.1487
https://doi.org/10.1007/s10750-012-1289-4
https://doi.org/10.1016/j.ocecoaman.2020.105176
https://doi.org/10.1029/2012PA002288
https://doi.org/10.1016/j.apgeog.2013.02.009
https://doi.org/10.1016/j.hal.2019.03.008
https://doi.org/10.1016/j.scitotenv.2019.03.155
https://doi.org/10.1016/j.jhydrol.2015.01.029
https://doi.org/10.1080/14888386.2014.930716
https://doi.org/10.1007/s10980-015-0241-1
https://doi.org/10.1371/journal.pone.0196431
https://doi.org/10.2495/sdp070572
https://doi.org/10.1017/S0025315402005775
https://doi.org/10.1126/science.aah5015
https://doi.org/10.3389/feart.2015.00028
https://doi.org/10.1007/s10661-007-0144-y
https://doi.org/10.1098/rsbl.2015.1037
https://doi.org/10.1073/pnas.1222475110
https://doi.org/10.1038/nature07051
https://doi.org/10.1111/j.1939-7445.2002.tb00093.x


438 CLIMATE AND ENVIRONMENTAL CHANGE IN THE MEDITERRANEAN BASIN  |  MedECC

serv. Lett. 2, 189–196.  
doi: 10.1111/j.1755-263x.2009.00060.x

Hamidov A, Helming K, Bellocchi G, Bojar W, Dalgaard T et 
al. 2018 Impacts of climate change adaptation options 
on soil functions: A review of European case-studies. 
L. Degrad. Dev. doi: 10.1002/ldr.3006

Hannah DM, Demuth S, van Lanen HAJ, Looser U, Prud-
homme C et al. 2011 Large-scale river flow archives: 
Importance, current status and future needs. Hydrol. 
Process. 25, 1191–1200. doi: 10.1002/hyp.7794

Hannah L, Roehrdanz PR, Ikegami M, Shepard A V., Shaw 
MR et al. 2013 Climate change, wine, and conserva-
tion. Proc. Natl. Acad. Sci. U. S. A. 110, 6907–6912.  
doi: 10.1073/pnas.1210127110

Hansen VD, Reiss KC 2015 Chapter 16 - Threats to Marsh 
Resources and Mitigation, in Coastal and Marine 
Hazards, Risks, and Disasters, eds. Shroder JF, El-
lis JT,  Sherman DJ (Boston: Elsevier), 467–494. 
http://www.sciencedirect.com/science/article/pii/
B9780123964830000169

Harland AD, Davies PS, Fixter LM 1992 Lipid content of 
some Caribbean corals in relation to depth and light. 
Mar. Biol. 113, 357–361. doi: 10.1007/bf00349159

Harley CDG, Randall Hughes A, Hultgren KM, Miner BG, 
Sorte CJB et al. 2006 The impacts of climate change 
in coastal marine systems. Ecol. Lett. 9, 228–241.  
doi: 10.1111/j.1461-0248.2005.00871.x

Harris SE 2012 Cyprus as a degraded landscape or resil-
ient environment in the wake of colonial intrusion. 
Proc. Natl. Acad. Sci. U. S. A. 109, 3670–3675.  
doi: 10.1073/pnas.1114085109

Harsch MA, Hulme PE, McGlone MS, Duncan RP 2009 
Are treelines advancing? A global meta-analysis of 
treeline response to climate warming. Ecol. Lett. 12, 
1040–1049. doi: 10.1111/j.1461-0248.2009.01355.x

Hassoun AER, Fakhri M, Raad N, Abboud-Abi Saab M, 
Gemayel E et al. 2019 The carbonate system of the 
Eastern-most Mediterranean Sea, Levantine Sub-ba-
sin: Variations and drivers. Deep Sea Res. Part II Top. 
Stud. Oceanogr. 164, 54–73. 

Hassoun AER, Gemayel E, Krasakopoulou E, Goyet C, 
Abboud-Abi Saab M et al. 2015 Acidification of the 
Mediterranean Sea from anthropogenic carbon pen-
etration. Deep Sea Res. Part I Oceanogr. Res. Pap. 102, 
1–15. doi: 10.1016/j.dsr.2015.04.005

Hassoun AER, Ujević I, Mahfouz C, Fakhri M, Roje-Busatto 
R et al. 2021 Occurrence of domoic acid and cyclic 
imines in marine biota from Lebanon-Eastern Medi-
terranean Sea. Sci. Total Environ. 755, 142542.  
doi: 10.1016/j.scitotenv.2020.142542

Heinrich I, Touchan R, Dorado Liñán I, Vos H, Helle G 2013 
Winter-to-spring temperature dynamics in Turkey 
derived from tree rings since AD 1125. Clim. Dyn. 41, 
1685–1701. doi: 10.1007/s00382-013-1702-3

Hejazi M, Edmonds J, Clarke L, Kyle P, Davies E et al. 
2014 Long-term global water projections using six 
socioeconomic scenarios in an integrated assessment 

modeling framework. Technol. Forecast. Soc. Change 
81, 205–226. doi: 10.1016/j.techfore.2013.05.006

Helman D, Osem Y, Yakir D, Lensky IM 2017 Relationships 
between climate, topography, water use and produc-
tivity in two key Mediterranean forest types with dif-
ferent water-use strategies. Agric. For. Meteorol. 232, 
319–330. doi: 10.1016/j.agrformet.2016.08.018

Hendriks IE, Olsen YS, Duarte CM 2017 Light availability 
and temperature, not increased CO2, will structure 
future meadows of Posidonia oceanica. Aquat. Bot. 139, 
32–36. doi: 10.1016/j.aquabot.2017.02.004

Henle K, Dick D, Harpke A, Kühn I, Schweiger O et al. 2010 
Climate change impacts on European amphibians and 
reptiles, in Biodiversity and climate change: Reports and 
guidance developed under the Bern Convention - Volume 
I (Nature and Environment N°156) (Strasbourg, France: 
Council of Europe Publishing), 225–305.

Hennekam R, Jilbert T, Schnetger B, de Lange GJ 2014 
Solar forcing of Nile discharge and sapropel S1 for-
mation in the early to middle Holocene eastern Medi-
terranean. Paleoceanography 29, 343–356.  
doi: 10.1002/2013pa002553

Henry BK, Eckard RJ, Beauchemin KA 2018 Review: Ad-
aptation of ruminant livestock production systems to 
climate changes. animal 12, s445–s456.  
doi: 10.1017/S1751731118001301

Herbert ER, Boon PI, Burgin AJ, Neubauer SC, Franklin RB 
et al. 2015 A global perspective on wetland saliniza-
tion: ecological consequences of a growing threat to 
freshwater wetlands. Ecosphere 6, art206.  
doi: 10.1890/ES14-00534.1

Hernández-Morcillo M, Burgess PJ, Mirck J, Pantera A, 
Plieninger T 2018 Scanning agroforestry-based solu-
tions for climate change mitigation and adaptation in 
Europe. Environ. Sci. Policy 80, 44–52.  
doi: 10.1016/J.ENVSCI.2017.11.013

Herrera AM, Dudley TL 2003 Reduction of riparian arthro-
pod abundance and diversity as a consequence of 
giant reed (Arundo donax) invasion. Biol. Invasions 5, 
167–177. doi: 10.1023/A:1026190115521

Herrmann M, Estournel C, Adloff F, Diaz F 2014 Impact of 
climate change on the northwestern Mediterranean 
Sea pelagic planktonic ecosystem and associated 
carbon cycle. JGR Ocean. 119, 5815–5836.  
doi: 10.1002/2014JC010016

Heywood V 2017 The nature and composition of urban 
plant diversity in the Mediterranean. Flora Meditera-
nea 27, 195–220. doi: 10.7320/FlMedit27.195

Hirich A, Choukr-Allah R, Jacobsen S-E 2014 Quinoa in 
Morocco - Effect of Sowing Dates on Development and 
Yield. J. Agron. Crop Sci. 200, 371–377.  
doi: 10.1111/jac.12071

Hočvar S, Malej A, Boldin B, Purcell JE 2018 Seasonal 
fluctuations in population dynamics of Aurelia aurita 
polyps in situ with a modelling perspective. Mar. Ecol. 
Prog. Ser. 591, 155–166. doi: 10.3354/meps12387

Hódar JA, Zamora R 2004 Herbivory and climatic warm-

CHAPTER 4 - ECOSYSTEMS

https://doi.org/10.1111/j.1755-263x.2009.00060.x
https://doi.org/10.1002/ldr.3006
https://doi.org/10.1002/hyp.7794
https://doi.org/10.1073/pnas.1210127110
http://www.sciencedirect.com/science/article/pii/B9780123964830000169
http://www.sciencedirect.com/science/article/pii/B9780123964830000169
https://doi.org/10.1007/bf00349159
https://doi.org/10.1111/j.1461-0248.2005.00871.x
https://doi.org/10.1073/pnas.1114085109
https://doi.org/10.1111/j.1461-0248.2009.01355.x
https://doi.org/10.1016/j.dsr.2015.04.005
https://doi.org/10.1016/j.scitotenv.2020.142542
https://doi.org/10.1007/s00382-013-1702-3
https://doi.org/10.1016/j.techfore.2013.05.006
https://doi.org/10.1016/j.agrformet.2016.08.018
https://doi.org/10.1016/j.aquabot.2017.02.004
http://dx.doi.org/10.1002/2013pa002553
https://doi.org/10.1017/S1751731118001301
https://doi.org/10.1890/ES14-00534.1
https://doi.org/10.1016/J.ENVSCI.2017.11.013
https://doi.org/10.1023/A:1026190115521
https://doi.org/10.1002/2014JC010016
https://doi.org/10.7320/FlMedit27.195
https://doi.org/10.1111/jac.12071
https://doi.org/10.3354/meps12387


439CLIMATE AND ENVIRONMENTAL CHANGE IN THE MEDITERRANEAN BASIN  |  MedECC

ing: a Mediterranean outbreaking caterpillar attacks 
a relict, boreal pine species. Biodivers. Conserv. 13, 
493–500. doi: 10.1023/b:bioc.0000009495.95589.a7

Hooke JM 2006 Human impacts on fluvial systems in the 
Mediterranean region. Geomorphology 79, 311–335.  
doi: 10.1016/j.geomorph.2006.06.036

Howes EL, Joos F, Eakin CM, Gattuso J-P 2015 An updated 
synthesis of the observed and projected impacts of 
climate change on the chemical, physical and biologi-
cal processes in the oceans. Front. Mar. Sci. 2, 36.

Huang J, Yu H, Guan X, Wang G, Guo R 2016 Accelerated 
dryland expansion under climate change. Nat. Clim. 
Chang. 6, 166–171. doi: 10.1038/nclimate2837

Hulme P 2004 Invasions, islands and impacts: A Mediter-
ranean perspective, in Island ecology, eds. Fernan-
dez Palacios JM,  Morici C (Asociación Española de 
Ecología Terrestre, La Laguna), 337–361.

Hulme PE 2017 Climate change and biological invasions: 
evidence, expectations, and response options. Biol. 
Rev. 92, 1297–1313. doi: 10.1111/brv.12282

Huntley B 2001 The nature of Mediterranean Europe: an 
ecological history edited by A. T. Grove and Oliver 
Rackham, Yale University Press, New Haven, 2001. 
No. of pages: 384. Price: £45. ISBN 0 300 08443 9. 
Earth Surf. Process. Landforms 26, 908–909.  
doi: 10.1002/esp.247

Hurni H, Giger M, Liniger H, Mekdaschi Studer R, Messerli 
P et al. 2015 Soils, agriculture and food security: the 
interplay between ecosystem functioning and human 
well-being. Curr. Opin. Environ. Sustain. 15, 25–34.  
doi: 10.1016/J.COSUST.2015.07.009

Iakovoglou V, Zaimes GN, Gounaridis D 2013 Riparian ar-
eas in urban settings: Two case studies from Greece. 
Int. J. Innov. Sustain. Dev. 7, 271–288.  
doi: 10.1504/IJISD.2013.056944

Iglesias A, Garrote L, Flores F, Moneo M 2007 Challenges 
to Manage the Risk of Water Scarcity and Climate 
Change in the Mediterranean. Water Resour. Manag. 
21, 775–788. doi: 10.1007/s11269-006-9111-6
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al. 2014 Differential response of two Mediterranean 
cold-water coral species to ocean acidification. Coral 
Reefs 33, 675–686. doi: 10.1007/s00338-014-1159-9

Moy AD, Howard WR, Bray SG, Trull TW 2009 Reduced 
calcification in modern Southern Ocean planktonic 
foraminifera. Nat. Geosci. 2, 276–280.  
doi: 10.1038/ngeo460

Moyle PB 1995 Conservation of native freshwater fishes in 

CHAPTER 4 - ECOSYSTEMS

https://doi.org/10.1017/s0376892901270088
https://doi.org/10.1002/2014pa002705
https://doi.org/10.3989/scimar.04235.23A
https://doi.org/10.3989/scimar.04235.23A
https://doi.org/10.1127/0340-269x/2003/0033-0475
https://doi.org/10.4319/lo.2005.50.4.1213
https://doi.org/10.1111/j.1365-2486.2007.01469.x
https://doi.org/10.5194/nhess-17-449-2017
https://doi.org/10.1007/s10530-015-0908-1
https://doi.org/10.1371/journal.pone.0117250
http://10.1016/j.marpolbul.2007.01.013
https://doi.org/10.1007/s10113-018-1408-5
https://doi.org/10.1016/j.gloplacha.2010.03.003
https://doi.org/10.1007/978-94-007-2208-8
https://doi.org/10.1007/s10457-017-0126-1
https://doi.org/10.1007/s11027-010-9219-0
https://doi.org/10.3354/cr031085
https://doi.org/10.1038/nature13946
https://doi.org/10.1016/0022-0981(88)90110-4
https://doi.org/10.1007/s10457-018-0251-5
https://doi.org/10.3389/fmars.2019.00345
https://doi.org/10.1007/s10040-008-0311-4
https://doi.org/10.1016/j.jembe.2012.09.014
https://doi.org/10.1007/s00338-014-1159-9
http://dx.doi.org/10.1038/ngeo460


450 CLIMATE AND ENVIRONMENTAL CHANGE IN THE MEDITERRANEAN BASIN  |  MedECC

the Mediterranean-type climate of California, USA: A 
review. Biol. Conserv. 72, 271–279.  
doi: 10.1016/0006-3207(94)00089-9

Mualla W 2018 Water Demand Management Is a Must in 
MENA Countries…But Is It Enough? J. Geol. Resour. 
Eng. 6, 59–64. doi: 10.17265/2328-2193/2018.02.002

Mullan M, Kingsmill N, Agrawala S, Kramer AM 2015 Na-
tional Adaptation Planning: Lessons from OECD Coun-
tries. ed. W. Leal Filho Berlin-Heidelberg: Spring-
er-Verlag. doi: 10.1007/978-3-642-38670-1_38

Mullin M, Smith MD, McNamara DE 2019 Paying to save 
the beach: effects of local finance decisions on coastal 
management. Clim. Change 152, 275–289.  
doi: 10.1007/s10584-018-2191-5

Murciego AM, Sánchez AG, González MAR, Gil EP, Gordillo 
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2016 Assessing the persistence capacity of communi-
ties facing natural disturbances on the basis of spe-
cies response traits. Ecol. Indic. 66, 76–85.  
doi: 10.1016/j.ecolind.2016.01.024

Sánchez-Salguero R, Camarero JJ, Dobbertin M, Fernán-
dez-Cancio Á, Vilà-Cabrera A et al. 2013 Contrasting 
vulnerability and resilience to drought-induced de-
cline of densely planted vs. natural rear-edge Pinus 
nigra forests. For. Ecol. Manage. 310, 956–967.  
doi: 10.1016/j.foreco.2013.09.050

Sanchez A, Abdul Malak D, Guelmami A, Perennou C 2015 
Development of an indicator to monitor mediterra-
nean wetlands. PLoS One 10, e0122694.  
doi: 10.1371/journal.pone.0122694

Santinelli C, Hansell DA, Ribera d’Alcalà M 2013 Influence 
of stratification on marine dissolved organic carbon 
(DOC) dynamics: The Mediterranean Sea case. Prog. 
Oceanogr. 119, 68–77.  
doi: 10.1016/j.pocean.2013.06.001

Santos A, P. Godinho D, Vizinho A, Alves F, Pinho P et al. 
2018 Artificial lakes as a climate change adaptation 
strategy in drylands: evaluating the trade-off on 
non-target ecosystem services. Mitig. Adapt. Strateg. 

CHAPTER 4 - ECOSYSTEMS

https://doi.org/10.1038/295105a0
https://doi.org/10.1016/j.palaeo.2009.10.015
https://doi.org/10.1016/j.revpalbo.2018.06.008
https://doi.org/10.1016/j.syapm.2017.11.007
https://doi.org/10.5424/fs/2010193-8604
https://doi.org/10.1111/j.1365-2699.2011.02592.x
https://doi.org/10.5424/fs/2017262-11205
https://doi.org/10.1016/J.AGWAT.2014.05.008
https://doi.org/10.1111/j.1365-2486.2006.01246.x
http://dx.doi.org/10.1007/1-4020-3760-0
https://doi.org/10.1371/journal.pone.0032742
https://doi.org/10.1126/science.287.5459.1770
https://doi.org/10.3390/w11020182
https://doi.org/10.3390/su70911980
https://doi.org/10.1016/j.foreco.2012.10.05
http://www.bioone.org/doi/abs/10.2112/07A-0005.1
https://doi.org/10.1016/j.foreco.2018.07.009
https://doi.org/10.1016/j.ecolind.2016.01.024
https://doi.org/10.1016/j.foreco.2013.09.050
https://doi.org/10.1371/journal.pone.0122694
https://doi.org/10.1016/j.pocean.2013.06.001


459CLIMATE AND ENVIRONMENTAL CHANGE IN THE MEDITERRANEAN BASIN  |  MedECC

Glob. Chang. 23, 887–906.  
doi: 10.1007/s11027-017-9764-x

Santos MJ 2010 Encroachment of upland Mediterranean 
plant species in riparian ecosystems of southern  
Portugal. Biodivers. Conserv. 19, 2667–2684.  
doi: 10.1007/s10531-010-9866-1

Sanz-Elorza M, Dana ED, González-Moreno A, Sobrino E 
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