Understanding Coastal Risks

Coastline erosion

Especially around river mouths and harbors due to reduced sediment supply from rivers. The dangers of shoreline retreat are:

- Critical infrastructure at risk (transport networks, ports, airports, cultural sites)
- Shrunken tourism areas
- Loss of vital coastal habitats
- Weakened coastal defenses

Flooding

Rising sea levels significantly increase the threat of coastal flooding and permanent inundation.

Vulnerable areas Densely populated and urbanised regions.

heavy rainfall events + rare tsunamis.

Biodiversity loss

Mass mortality

Marine and terrestrial range of risks that can be

change and massive

 \rightarrow 20 million

permanently

displaced by 2100.

→ Over 220 million

people are already

suffering from

water scarcity.

people could be 🗾

Coastal risks and adaptation

a Mediterranean perspective

Present adaptation methods, mostly engineering-based, often ignore future sea-level rise, which limits their long-term effectiveness.

Reducing CO.

Tackling these coastal

protection, managing

ecosystems. Effective

adaptation requires

risks involves enhancing

pollution, and conserving

tailored risk assessments

and improved governance.

emissions is crucial to avoid worsening risks in every sector.

> Stronger governance, cross-border cooperation, and coordinated regulation are essential for managing resources and pollution.

Many coastal species are reaching their tolerance limits.

1.000 invasive species are observed, disrupting ecosystems and biodiversity.

shrunk by 50% since 1970, reducina biodiversity and natural protection against sea level rise.

ightarrow Wetlands have

 \rightarrow Over 80% of fish stocks are overfished. with some being exploited up to six times beyond sustainable limits

 \rightarrow By 2050, the

mean shoreline is

projected to **retre**at

up to 23 m.

Designating the basin as an **Emission Control** Area by 2025 could cut sulfur emissions by 79% and fine particles by 24%.

Support needed for southern and eastern countries. 🥒

Protection for the population

It faces conflicting local development goals:

Nature-based solutions are promising but require compromises in

spaces and usages.

Adaptation Measures and Solutions

Ecosystem conservation

Protection & restoration efforts

Essential but insufficient, as some losses are irreversible.

Actions to counter non-indigenous species

eradication efforts, commercial exploitation, protected areas, etc.

Renewable energies

Offshore wind, wave and solar energy

The overall shifting to renewable remains slow.

Circular and sustainable development models

Great potential for southern and eastern countries.

Water scarcity

It is influenced by:

overall drying trends from climate change

salinisation of coastal aquifers due to seawater intrusion when the sea level rises

increasing demands

from tourism, irrigation, population growth

Accumulated pollution

Further impacts on people

The combination of degradations, climate change extreme events and pollution are threatening local economies, livelihoods and health of millions of citizens. Tourism, agriculture, and fisheries are particularly vulnerable.

Durable tourism

Electrifying ports *via* Short-Side Electricity (SSE) to reduce CO₂ emissions.

Encouraging sustainable tourism with green taxes, sustainable tourism indicators, and eco-labelling.

Pollution management

Actions to reduce pollution are more effective at the source than at endpoints.

Implementing waste-to-energy projects, recycling, reusing, sustainable farming, and better water treatment are key steps.

Water availability

To ensure long-term water security, increasing water supply should be paired with:

Reducing demand: improving irrigation and urban water management, shifting agricultural practices through financial incentives.

Improving water quality

with wastewater treatment that provides co-benefits (like healthier ecosystems).